1. Basic Concepts

1.3 Classifications of Signals

  • Continuous vs Discrete
    • continuous time signal $x(t)$
    • discrete time signal $x[n]$
      • 在特定時間上才有值,通常都為固定在 continuous-time 做 signal sampling 得出
      • signal is defined at particular instants(立即) of time
      • 值仍是 continuous
      • 需要做 quantization 完才會是 discrete signal 表值與時間皆為 discrete
      • discrete time 表示法
        • $x[k] = x[kT]$
        • $x[k]$ 表第 k 個取樣
        • $x[kT]$ 表第 kT 時間取樣
        • $x[kT]$ 的表示法比較好
          • 可以直接看出時間點
          • 未來也可以與其他數據結合搭配,所以時間單位再結合時,也需要校正
  • Periodic and Nonperiodic Signal
    • periodic continuous $x(t) = x(t+nT)$
    • periodic discrete $x[n] = x[n+N]$
  • 【補充】Euler’s Identities
    • $e^{j\theta} = cos\theta + jsin\theta$
    • $e^{-j\theta} = cos\theta - jsin\theta$
  • An analog signal vs A digital signal
    • An analog is a continuous time signal in which the variation with time is analogous (or proportional) 時間與值都是連續的
    • is a discrete time signal that can have a finite number of values (usually binary).時間與值都不是連續的
      • 需要 sampling and quantization
  • Energy vs Power Signals
    • A signal $x(t)$ or $x[n]$ is an energy signal if and only if 代E公式會介於0到無窮大 and 代P公式會等於 0
    • A signal $x(t)$ or $x[n]$ is a power signal if and only if 代P公式會介於0到無窮大 and代E公式會等於無窮大
    • 所以當題目給一個 $x(t)$ 或是 $x[n]$ 時,就直接帶 $E$ 或 $P$ 的公式,看哪一個會介於0到無窮大之間
  • Even vs Odd smmetry
    • even:$x(t) = x(-t)$
    • odd:$x(t) = -x(-t)$
    • 每一個 signal 都可以被分為 even part 跟 odd part
      • $x(t) = x_e(t) + x_o(t)$
      • $x_e(t) = \frac{1}{2}[x(t) + x(-t)]$(把odd part 部分給消掉)
      • $x_o(t) = \frac{1}{2}[x(t) - x(-t)]$(把even part 部分給消掉)

1.4 Basic continuous-time signals

  • Unit impulse function(delta function)
    • $\int_{0-}^{0+} \delta(t) \,dt = 1$
    • sampling
  • Unit step function
  • Unit ramp function
  • 3 種函數關係
    • $r(t)$ 微分變 $u(t)$, $u(t)$ 微分變 $\delta(t)$
    • $\delta(t)$ 積分變 $u(t)$, $u(t)$ 積分變 $r(t)$
  • 其他延伸的 function
    • Rectangular Pulse Function
    • Triangular Pulse Function

1.5 Basic discrete-time signals

  • Unit impulse sequence
  • Unit step sequence
  • Unit ramp sequence
  • 三者相對關係
  • 其他函數圖形
    • Sinusoidal sequence
    • Exponential Sequence
      • $x[n] = Ae^{-anT} = A\alpha^n, \alpha = e^{-aT}$

1.6 Basic operations on signals

  • Time Reversal
  • Time Scaling
  • Time Shifting
  • Amplitude Transformations

1.7 Classification of systems

  • Continuous Time and Discrete Time Systems
  • Causal and Noncausal Systems
    • A causal system is one whose present response does not depend on the future values of the input
  • Linear and Nonlinear Systems
    • Homogeneity + Additivity
  • Time Varying and Time Invariant Systems
    • vary:to change or cause something to change in amount or level, especially from one occasion to another
    • time-invariant
    • time-varying
  • Systems with and without Memory
    • When the output of a system depends on the past or future input, the system is said to have a memory.

2. Convolution

2.2 Impulse response

The impulse response to an LTI (linear, time invariant) system is the output of the system to a unit impulse function.

  • Impulse response(green part)

2.3 Convolution integral

  • The convolution of two signals $x(t)$ and $h(t)$ is usually written in terms of the operator $*$ as
    • 我們 input signal $x(t)$ 與 impulse function $\delta(t)$,經過 LTI 系統的 transform,我們可以得到一個 impulse response $h(t)$,接著 $x(t)$ 再與 $h(t)$ 做 convolution 後,就可以得到 output $y(t)$
    • 若 $x(t) = 0$ for $t < 0$, 且 the system is causal, $h(t) = 0$ for $t < 0$(此處的 $\tau$ 為變數)
      • 或是也可寫成 $y(t) = x(t)*h(t) = \int_{0}^{t}x(t-\tau)h(\tau)d\tau$

2.4 Graphical convolution

  • 使用到前方提過的函數技巧
  • 需要分段討論的範例
    • 根據定義可列

2.5 Block diagram representation for continuous

2.6 Discrete-time convolution

  • 定義
    • 2.2、2.3 的離散版本
  • 範例 Find $y[n] = x[n]*h[n]$
    • 法一分析
    • 法二圖解
      • 意義上為,將 $h(\tau)$ 先做 mirror(對y軸對稱),再分別向右平移 $0\sim t$、每次都與 $x(\tau)$ 相乘,最後再合成。
      • 推廣在 $matlab$ 的運算方式

2.7 Block diagram realization for discrete

  • 範例 Let $x[n] = {3, 0, 2, 6}$ and $y[n] = {6, 12, 25, 20, 38, 42}$. Find $h[n]$
    • 法一長除法:
    • 法二遞迴:

3. The Laplace Transform

3.1 Introduction

  • Laplace Transform 是將 linear system 轉換為 frequency-domain 的表達方式
  • 能夠將常微分方程式(ordinary differential equations)轉為代數方程(algebra equations),以利於運算
  • 讓 convolution 成為簡單的乘法
  • 在 continuous-time LTI (Linear Time-invariant) system 產生 transfer function

3.2 Definition of laplace transform

  • Laplace Transform:
  • Inverse Laplace Transform:
  • Laplace transformable:
    • Region of Convergence(ROC):Laplace transform 就是會收斂的範圍 $Re(s) = σ >σ_c$
    • example:

3.3 Properties of the laplace transform

  • Linearity
  • Scaling
  • Time Shifting
  • Frequency Shifting
  • Time Differentiation
  • Time Convolution
  • Time Integration
  • Initial and Final values:已知,當
  • all Properties:

3.4 The inverse laplace transform

  • Definition
  • Simple Poles
    • 已知:我們已知,故在 Simple poles 可以直接從 $X(s)$ 回推 $x(t)$
    • formate:
  • Repeated Poles
    • 已知:因為 $(s+p)^n$ 出現,因此需要 微分 來找 $k$,且
    • format:
    • 補充:當看到 $L^{-1}[\frac{1}{s^2}] = t$ 也是用此 pole
  • Complex Poles
    • 已知: Frequency Shifting 故 Complex Poles 可以應用
    • formate:先從分母找 $\alpha$、$\beta$,再調整分子看 A B
    • 延伸:$sin$ 跟 $cos$ 可以合併

3.5 Transfer function

  • 定義:$H(s)$為輸出結果 $Y(s)$ 與輸入結果 $X(s)$ 的比值,如此一來,再利用 Inverse Laplace Transfer,就可以輕鬆找到 $h(t)$
  • Cascade connection
  • Parrallel interconnection
  • Feedback interconnection

3.6 Integro-Differential equations

4. Fourier Series

5. Fourier Transform

6. Discrete Fourier Transform

7. z-Transform