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Introduction
• Present a space-time synthesis algorithm from a dynamic monocular video that does not 

require known camera poses and camera intrinsics as input.

• Our proposed careful architecture designs and auxiliary losses improve the robustness 
of camera pose estimation and dynamic radiance field reconstruction.

• Quantitative and qualitative evaluations demonstrate the robustness of our method over 
other state-of-the-art methods on several challenging datasets that typical SfM systems 
fail to estimate camera poses.
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Related Work

• D-NeRF: Neural Radiance Fields for Dynamic Scenes
• CVPR 2021

• Dynamic View Synthesis from Dynamic Monocular Video
• ICCV 2021



Related Work – D-NeRF

CVPR 2021



Introduction
• The first end-to-end neural rendering system that is applicable to dynamic scenes.

• Core idea to build our method is to decompose learning in two modules. Both mappings 
are learned with deep fully connected networks without convolutional layers.

• Allows to synthesize novel images, providing control in the continuum (𝜃, 𝜑, 𝑡) of the 
camera views and time component.
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Framework

• The proposed architecture consists of two main blocks
• Deformation network 𝚿𝒕 predicts a deformation field defining the transformation between the scene at 

time t and the scene in its canonical configuration.
• Canonical network 𝚿𝒙 regressing volume density and view-dependent RGB color from every camera ray



Method

• Optimized to estimate the deformation field between the scene at a specific time and the scene 
in canonical space

• The canonical network Ψ𝑥 is trained so as to encode volumetric density and color of the scene in 
canonical configuration.

• First, encode x into a 256-dimensional feature vector. This feature vector is then concatenated with the 
camera viewing direction 𝑑

• Deformation Network

• Canonical Network



Volume Rendering

• Approximated via numerical quadrature
• To select a random set of quadrature points {ℎ!}!"#$ ∈ [ℎ!, ℎ%] a stratified sampling strategy



Learning Loss

• Trained with 400 × 400 images during 800k iterations 
• Batch size of Ns = 4096 rays, each sampled 64 times along the ray
• Both network consists on simple 8-layers MLPs with ReLU activations



Experiment

• The same colors on corresponding points indicate the correctness of 
such mapping

• Different materials (plastic –green–, 
translucent glass –blue– and metal –red–)

• Able to synthesize the shading effects



Experiment

• T-NeRF scene is represented 
by a 6D input (x, y, z, θ, φ, t)

• D-NeRF, retains high details 
of the original image in the 
novel views



Related Work – Dynamic-NeRF

ICCV 2021



Introduction
• Present an algorithm for generating novel views at arbitrary viewpoints and any input 

time step given a monocular video of a dynamic scene.

• Jointly train a time-invariant static NeRF and a time-varying dynamic NeRF, and learn 
how to blend the results in an unsupervised manner.

• To resolve the ambiguity, we introduce multi-view constraints and regularization losses 
to encourage a more physically plausible solution.
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Framework

• propose to use two different models to scene components
• (a) Static NeRF: reconstruct the background’s structure and appearance without moving objects
• (b) Dynamic NeRF: model a dynamic scene from a single video, leverage the multi-view constraints



Static NeRF

• using numerical quadrature for approximating the volume rendering interval



Dynamic NeRF
• Train an MLP that takes a 3D position and time (𝑥, 𝑦, 𝑧, 𝑡) as input to model the volume 

density and color of the dynamic objects at each time instance
• Lacks multi-view constraints. We predict the forward and backward scene flow and use 

them to create a warped radiance field.



Dynamic NeRF
• Dynamic rendering photometric loss

• warped radiance field by resampling the radiance fields implicitly modeled at time 𝑡 + 1 and 𝑡 − 1



Regularization Losses for Dynamic NeRF

• Motion matching loss
• Minimize the endpoint error between the estimated optical flow and our scene flow induced optical 

flow
• Since we jointly train our model with both photometric loss and motion matching loss, finally, our 

learned volume density helps render a more accurate flow than the estimated.



Regularization Losses for Dynamic NeRF
• Motion regularization

• 2D optical flow does not fully resolve all ambiguity, since 1D family vectors produces the same 2D 
optical flow

• Regularize the scene flow to be slow and temporally smooth
• Cycle consistency regularization improve the consistency of the scene flow 



Regularization Losses for Dynamic NeRF
• Sparsity regularization

• Minimize the entropy of the rendering weights 𝑇&𝛼& along each ray so that few samples dominate 
the rendering

• Depth order loss
• For a moving object, we can either interpret it as 

• close and slowly 
• far away and fast

• Leverage the MiDaS depth estimation to estimate the input depth.
• With static NeRF estimates accurate depth, we constrain our dynamic NeRF with it



Regularization Losses for Dynamic NeRF

• 3D temporal consistency loss
• If an object remains unmoved for a while, the network can not learn the correct volume density and 

color of the occluded background, the model may generate holes.
• Enforce the volume density and color of each 3D position to match its scene flow neighbors’

• Rigidity regularization of the scene flow
• If 3D position has no motion, model prefers to explain by the static NeRF, blending weight b to be 

closed to 1 and the scene flow is forced to be zero.
• For a non-rigid position, the blending weight b should be 0.



Final Loss
• Combined model

• Full rendering photometric loss



Experiment



Experiment
• rigidity regularization are the keys to better visual results

• We learn a time-varying blending weight.
• Without this regularization, the background becomes time-variant and leads to floating artifacts



Ablation study
• depth order loss

• Training with depth order loss ensures the correct relative depth of the dynamic object.

• Motion regularize loss
• Regularizing our scene flow prediction in dynamic NeRF can help handle videos with large object 

motion.



Conclusion of Related work
• D-NeRF:
• represent time-varying deformations with two modules

• one that learns the deformation field of the scene between original space and the canonical 
space

• another that learns canonical configuration

• Dynamic-NeRF:
• scene flow based regularization for enforcing temporal consistency
• jointly training a time-invariant static NeRF and a time-varying Dynamic 

NeRF, and learn how to blend it
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Motion Mask generation

• Excluding dynamic regions helps improve the robustness of camera pose estimation
• Leverage Mask R-CNN
• Epipolar Geometry

• Estimate the fundamental matrix using the optical flow from consecutive frames
• Calculate and threshold the Sampson distance (the distance of each pixel to the estimated epipolar

line)



• Optimize, start with a smaller static voxel resolution and progressively increase the voxel resolution 
during the training. 

• This coarse-to-fine strategy is essential to the camera pose estimation as the energy surface will 
become smoother.

Coarse-to-fine static scene 
reconstruction



• Fuse the viewing direction only in the last layer of the color MLP
• Without the late viewing direction conditioning, the optimization could minimize the 

photometric loss by optimizing the MLP and lead to erroneous camera poses and 
geometry estimation

Late viewing direction conditioning



Photometric Losses

term meaning
𝑀 the motion mask

𝜹 the distance between two consecutive sample points along the ray

𝑁 the number of samples along each ray

𝑇 accumulated transparency



• We use 2D optical flow estimated by RAFT to guide the training. 
• Volume render all the sampled 3D points along a ray to generate a surface point
• Reproject this point onto its neighbor frame and calculate the reprojection error

Auxiliary Losses
(1) Reprojection loss 𝐿4564789



• Regularize the error in the z-direction (in the camera coordinate)
• Volume render the two points into 3D space and calculate the error of the z component
• Care more about the near than the far, we compute this loss in the inverse-depth domain

Auxiliary Losses
(2) Disparity loss 𝐿:;969



• Pre-calculate the depth map using MiDaS
• Enforce the depth order from multiple pixels of the same frame to match the order of a 

monocular depth map.

Auxiliary Losses
(3) Monocular depth loss

𝐿<7=7:56>?9



Static Radiance 
Field final Losses



The impact of design choices



Handling temporal information



• Need auxiliary loss as external priors to better model the dynamic movements 
• Similar to the static part, but we need to model the movements of the 3D points 

Scene flow modeling

term meaning
𝑆%→%'( the 3D scene flow of the 3D point (𝑥, 𝑦, 𝑧) at time 𝑡% to 𝑡%'(
𝑆%→%)( the 3D scene flow of the 3D point (𝑥, 𝑦, 𝑧) at time 𝑡% to 𝑡%)(



(1) Reprojection loss 𝐿*+,*-./

(2) Disparity loss 𝐿/%0,/

(3) Monocular depth loss 𝐿1-2-/+,34/

• regularize the 3D motion prediction

Scene flow modeling training loss



• supervise the nonrigidity mask 𝑀: with motion mask 𝑀

• overall loss of the dynamic part

Other Dynamic part loss



• linearly compose the static and dynamic parts into the final results

• total training loss

Total training loss



• The training process takes around 28 hours with one NVIDIA V100 GPU
• we parameterize the scenes with normalized device coordinates (NDC)
• To handle unbounded scenes in the wild videos, we parameterize the scenes using the 

contraction parameterization.

Implementation detail

Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields



• Distortion loss: 
• suppresses “floaters” (pieces of semi-transparent material floating in space)
• regularize the distribution of weights across different segments of a ray
• encourages each ray to be as compact as possible

Implementation detail

Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields
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Evaluation on Camera 
Poses Estimation

• We exclude the COLMAP results 
since it fails to produce poses in 5 out 
of 14 sequences in MPI Sintel dataset. 



Evaluation on Camera Poses Estimation

• The sorted error plots showing both the accuracy and completeness/robustness in the 
MPI Sintel dataset. 



Evaluation on Camera Poses Estimation
• Qualitative results of static view synthesis on the DAVIS dataset from unknown 

camera poses and ground truth foreground masks.



Evaluation on Dynamic View Synthesis
• We report the average PSNR and LPIPS results with comparisons to existing methods 

on Dynamic Scene dataset

• We compare the mPSNR and mSSIM scores with existing methods on the iPhone dataset



Evaluation on Dynamic View Synthesis
• Compared to other methods, our results are sharper, closer to the ground truth, and 

contain fewer artifacts.



Evaluation on Dynamic View Synthesis
• COLMAP fails to estimate the camera poses for 44 out of 50 sequences in the DAVIS dataset
• Run our method and give our camera poses to other methods as input
• Other can reconstruct consistent static scenes but generate artifacts for the dynamic parts



Ablation Study



Failure Cases
• (a) In the cases that the camera is moving fast, the flow estimation fails and leads to 

wrong estimated poses and geometry
• (b) Our method assumes a shared intrinsic over the entire video and thus cannot 

handle changing focal length well.
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Conclusion

• Present robust dynamic radiance fields for space-time synthesis of casually 
captured monocular videos without requiring camera poses as input.

• Demonstrate that our approach can reconstruct accurate dynamic radiance fields 
from a wide range of challenging videos.

• Quantitative and qualitative evaluations demonstrate the robustness of our method 
over other state-of-the-art methods on several challenging datasets that typical 
SfM systems fail to estimate camera poses.


