Robust Dynamic Radiance Fields

Yu-Lun Liu^{2*} Chen Gao¹ Andreas Meuleman^{3*} Hung-Yu Tseng¹ Ayush Saraf¹ Changil Kim¹ Yung-Yu Chuang² Johannes Kopf¹ Jia-Bin Huang^{1,4}

¹Meta ²National Taiwan University ³KAIST ⁴University of Maryland, College Park

CVPR 2023

Presenter: Hao Wang

Advisor: Prof. Chia-Wen Lin

Outline

- Introduction
- Related Work
- Framework
- Method
- Experiment
- Conclusion

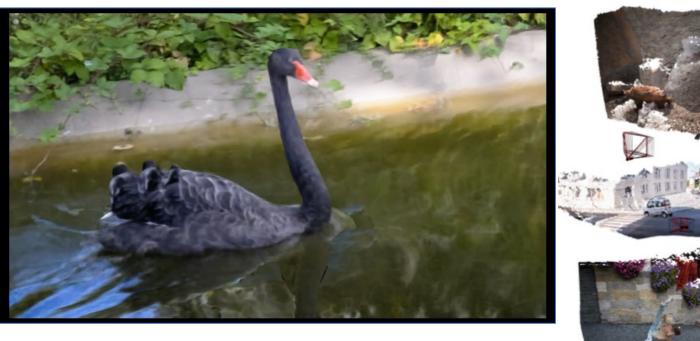
Introduction

- Present a space-time synthesis algorithm from a dynamic monocular video that does not require known camera poses and camera intrinsics as input.
- Our proposed careful architecture designs and auxiliary losses improve the robustness of camera pose estimation and dynamic radiance field reconstruction.

• Quantitative and qualitative evaluations demonstrate the robustness of our method over other state-of-the-art methods on several challenging datasets that typical SfM systems fail to estimate camera poses.

Table 1. Categorization of view synthesis methods.							
	Known camera poses	Unknown camera poses					
Static scene	NeRF [44], SVS [59], NeRF++ [82], Mip-NeRF [4], Mip-NeRF 360 [5], DirectVoxGO [68], Plenoxels [23], Instant-ngp [45], TensoRF [12]	NeRF [73], BARF [40], SC-NeRF [31], NeRF-SLAM [60]					
Dynamic scene	NV [43], D-NeRF [56], NR-NeRF [71], NSFF [39], DynamicNeRF [24], Nerfies [52], HyperNeRF [53], TiNeuVox [20], T-NeRF [25]	Ours					

Introduction



Outline

- Introduction
- Related Work
- Framework
- Method
- Experiment
- Conclusion

Related Work

- D-NeRF: Neural Radiance Fields for Dynamic Scenes
 - CVPR 2021
- Dynamic View Synthesis from Dynamic Monocular Video
 - ICCV 2021

Related Work – D-NeRF

D-NeRF: Neural Radiance Fields for Dynamic Scenes

Albert Pumarola¹ Enric Corona¹ Gerard Pons-Moll^{2,3} Francesc Moreno-Noguer¹

¹Institut de Robòtica i Informàtica Industrial, CSIC-UPC

²University of Tübingen

³Max Planck Institute for Informatics

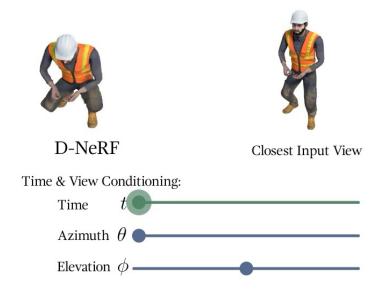
CVPR 2021

Introduction

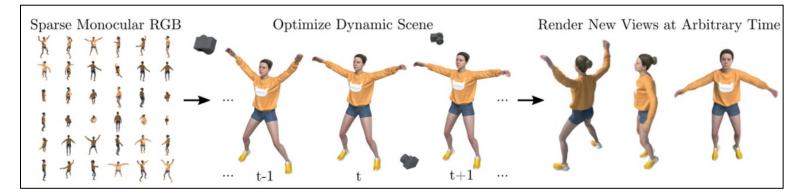
- The first end-to-end neural rendering system that is applicable to dynamic scenes.
- Core idea to build our method is to decompose learning in two modules. Both mappings are learned with deep fully connected networks without convolutional layers.
- Allows to synthesize novel images, providing control in the continuum (θ, φ, t) of the camera views and time component.

Introduction

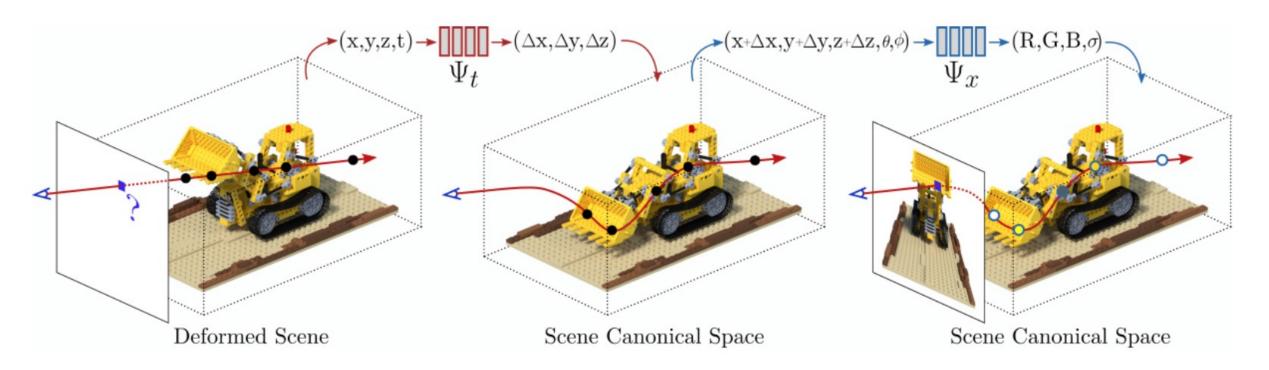
Synthesis Results



Closest Input Time

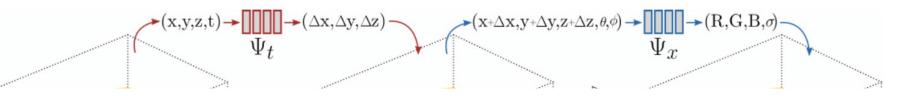


Framework



- The proposed architecture consists of two main blocks
 - **Deformation network Ψ**t predicts a deformation field defining the transformation between the scene at time t and the scene in its canonical configuration.
 - Canonical network Ψx regressing volume density and view-dependent RGB color from every camera ray

Method



Deformation Network

$$\Psi_t(\mathbf{x}, t) = \begin{cases} \Delta \mathbf{x}, & \text{if } t \neq 0 \\ 0, & \text{if } t = 0 \end{cases}$$
 (1)

• Optimized to estimate the deformation field between the scene at a specific time and the scene in canonical space

Canonical Network

- The canonical network Ψx is trained so as to encode volumetric density and color of the scene in canonical configuration.
- First, encode x into a 256-dimensional feature vector. This feature vector is then concatenated with the camera viewing direction *d*

Volume Rendering

$$C(p,t) = \int_{h_n}^{h_f} \mathfrak{T}(h,t)\sigma(\mathbf{p}(h,t))\mathbf{c}(\mathbf{p}(h,t),\mathbf{d})dh, \quad (2)$$

where
$$\mathbf{p}(h,t) = \mathbf{x}(h) + \Psi_t(\mathbf{x}(h),t),$$
 (3)

$$[\mathbf{c}(\mathbf{p}(h,t),\mathbf{d}),\sigma(\mathbf{p}(h,t))] = \Psi_x(\mathbf{p}(h,t),\mathbf{d}),\tag{4}$$

and
$$\Im(h,t) = \exp\left(-\int_{h_n}^h \sigma(\mathbf{p}(s,t))ds\right)$$
. (5)

- Approximated via numerical quadrature
 - To select a random set of quadrature points $\{h_n\}_{n=1}^N \in [h_n, h_f]$ a stratified sampling strategy

$$C'(p,t) = \sum_{n=1}^{N} \mathfrak{T}'(h_n,t)\alpha(h_n,t,\delta_n)\mathbf{c}(\mathbf{p}(h_n,t),\mathbf{d}), \quad (6)$$

where
$$\alpha(h, t, \delta) = 1 - \exp(-\sigma(\mathbf{p}(h, t))\delta),$$
 (7)

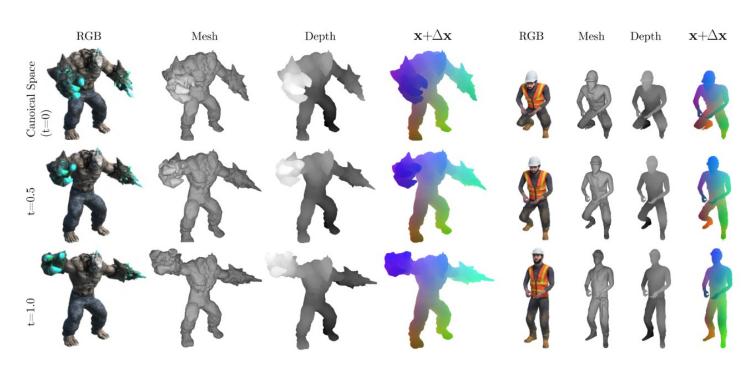
and
$$\mathfrak{T}'(h_n,t) = \exp\left(-\sum_{m=1}^{n-1} \sigma(\mathbf{p}(h_m,t))\delta_m\right)$$
, (8)

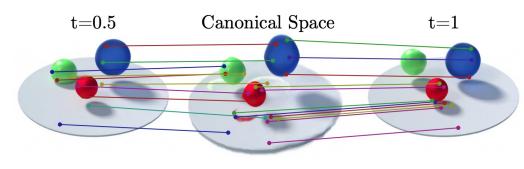
Learning Loss

$$\mathcal{L} = \frac{1}{N_s} \sum_{i=1}^{N_s} \left\| \hat{C}(p, t) - C'(p, t) \right\|_2^2 \tag{9}$$

- Trained with 400×400 images during 800k iterations
- Batch size of Ns = 4096 rays, each sampled 64 times along the ray
- Both network consists on simple 8-layers MLPs with ReLU activations

Experiment

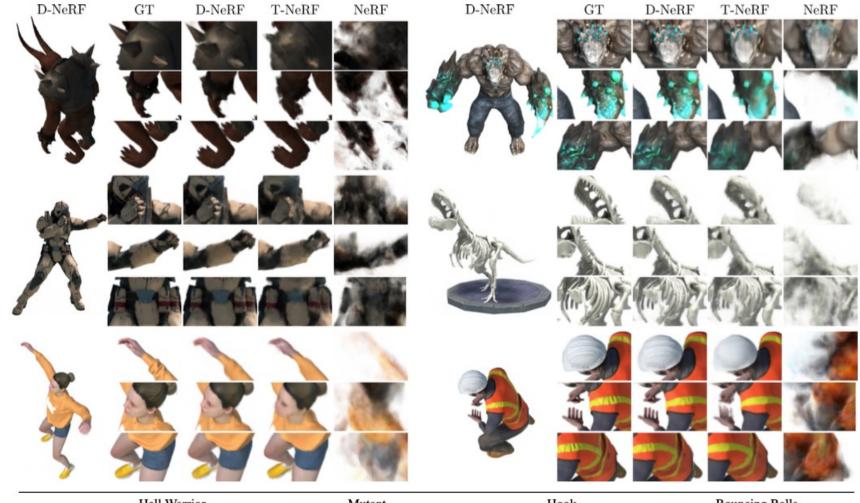




• The same colors on corresponding points indicate the correctness of such mapping

- Different materials (plastic –green–, translucent glass –blue– and metal –red–)
- Able to synthesize the shading effects

Experiment



- T-NeRF scene is represented by a 6D input $(x, y, z, \theta, \phi, t)$
- D-NeRF, retains high details of the original image in the novel views

	Hell Warrior			Mutant			Hook			Bouncing Balls						
Method	$MSE\downarrow$	$PSNR \uparrow$	$SSIM \!\!\uparrow$	LPIPS↓	$MSE\downarrow$	$PSNR \!\!\uparrow$	$SSIM \!\!\uparrow$	LPIPS↓	$MSE\downarrow$	$PSNR \!\!\uparrow$	$SSIM \!\!\uparrow$	$LPIPS\downarrow$	$MSE\downarrow$	$PSNR \!\!\uparrow$	SSIM↑	LPIPS↓
NeRF	44e-3	13.52	0.81	0.25	9e-4	20.31	0.91	0.09	21e-3	16.65	0.84	0.19	94e-4	20.26	0.91	0.2
T-NeRF	47e-4	23.19	0.93	0.08	8e-4	30.56	0.96	0.04	18e-4	27.21	0.94	0.06	16e-5	37.81	0.98	0.12
D-NeRF	31e-4	25.02	0.95	0.06	7e-4	31.29	0.97	0.02	11e-4	29.25	0.96	0.11	12e-5	38.93	0.98	0.1
	Lego			T-Rex			Stand Up			Jumping Jacks						
Method	$MSE\downarrow$	$PSNR \!\!\uparrow$	SSIM↑	LPIPS↓	$MSE\downarrow$	$PSNR \!\!\uparrow$	$SSIM \!\!\uparrow$	LPIPS↓	$MSE\downarrow$	$PSNR \!\!\uparrow$	SSIM↑	LPIPS↓	MSE↓	PSNR↑	SSIM↑	LPIPS↓
NeRF	9e-3	20.30	0.79	0.23	3e-3	24.49	0.93	0.13	1e-2	18.19	0.89	0.14	1e-2	18.28	0.88	0.23
T-NeRF	3e-4	23.82	0.90	0.15	9e-3	30.19	0.96	0.13	7e-4	31.24	0.97	0.02	6e-4	32.01	0.97	0.03
D-NeRF	6e-4	21.64	0.83	0.16	6e-3	31.75	0.97	0.03	5e-4	32.79	0.98	0.02	5e-4	32.80	0.98	0.03

Table 1: Quantitative Comparison. We report MSE/LPIPS (lower is better) and PSNR/SSIM (higher is better).

Related Work – Dynamic-NeRF

Dynamic View Synthesis from Dynamic Monocular Video

Chen Gao Virginia Tech Ayush Saraf Facebook Johannes Kopf Facebook

Jia-Bin Huang Virginia Tech

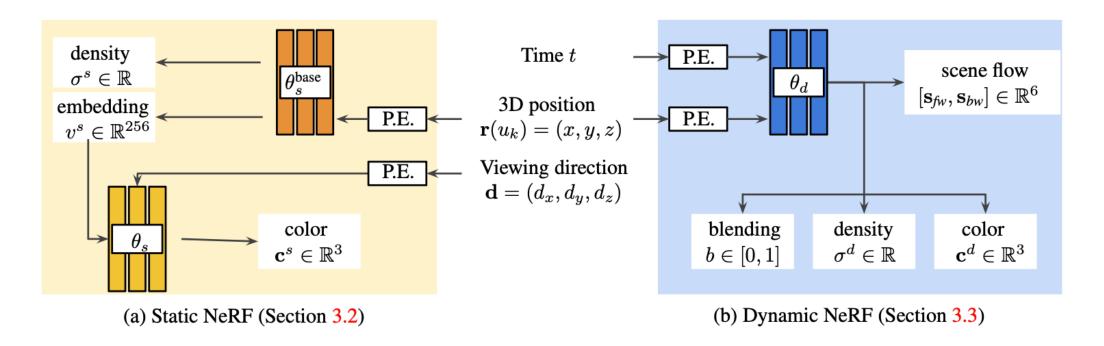
ICCV 2021

Introduction

- Present an algorithm for generating novel views at arbitrary viewpoints and any input time step given a monocular video of a dynamic scene.
- Jointly train a time-invariant static NeRF and a time-varying dynamic NeRF, and learn how to blend the results in an unsupervised manner.
- To resolve the ambiguity, we introduce multi-view constraints and regularization losses to encourage a more physically plausible solution.

Introduction

Framework



- propose to use two different models to scene components
 - (a) Static NeRF: reconstruct the background's structure and appearance without moving objects
 - (b) Dynamic NeRF: model a dynamic scene from a single video, leverage the multi-view constraints

Static NeRF

$$\mathbf{r}(u_k) = \mathbf{o} + u_k \mathbf{d}$$

$$(\sigma^s, \mathbf{c}^s) = \text{MLP}_{\theta} (\mathbf{r}(u_k)), \qquad (1)$$

• using numerical quadrature for approximating the volume rendering interval

$$\mathbf{C}^{s}(\mathbf{r}) = \sum_{k=1}^{K} T^{s}(u_{k}) \, \alpha^{s}(\sigma^{s}(u_{k}) \, \delta_{k}) \, \mathbf{c}^{s}(u_{k}), \qquad (2)$$

$$T^{s}(u_k) = \exp\left(-\sum_{k'=1}^{k-1} \sigma^{s}(u_k) \,\delta_k\right),\tag{3}$$

$$\mathcal{L}_{static} = \sum_{ij} \left\| \left(\mathbf{C}^s(\mathbf{r}_{ij}) - \mathbf{C}^{gt}(\mathbf{r}_{ij}) \right) \cdot \left(1 - \mathbf{M}(\mathbf{r}_{ij}) \right) \right\|_2^2$$

Dynamic NeRF

- Train an MLP that takes a 3D position and time (x, y, z, t) as input to model the volume density and color of the dynamic objects at each time instance
- Lacks multi-view constraints. We predict the forward and backward scene flow and use them to create a **warped radiance field**.

$$\left(\mathbf{s}_{fw}, \mathbf{s}_{bw}, \sigma_t^d, \mathbf{c}_t^d, b\right) = \mathbf{MLP}_{\theta_d}\left(\mathbf{r}(u_k), t\right)$$
 (5)

$$\left(\sigma_{t+1}^d, \mathbf{c}_{t+1}^d\right) = \text{MLP}_{\theta_d}(\mathbf{r}(u_k) + \mathbf{s}_{fw}, t+1) \tag{6}$$

$$\left(\sigma_{t-1}^d, \mathbf{c}_{t-1}^d\right) = \text{MLP}_{\theta_d}(\mathbf{r}(u_k) + \mathbf{s}_{bw}, t - 1) \tag{7}$$

Dynamic NeRF

- Dynamic rendering photometric loss
 - warped radiance field by resampling the radiance fields implicitly modeled at time t+1 and t-1

$$\left(\sigma_{t+1}^d, \mathbf{c}_{t+1}^d\right) = \text{MLP}_{\theta_d}(\mathbf{r}(u_k) + \mathbf{s}_{fw}, t+1)$$
 (6)

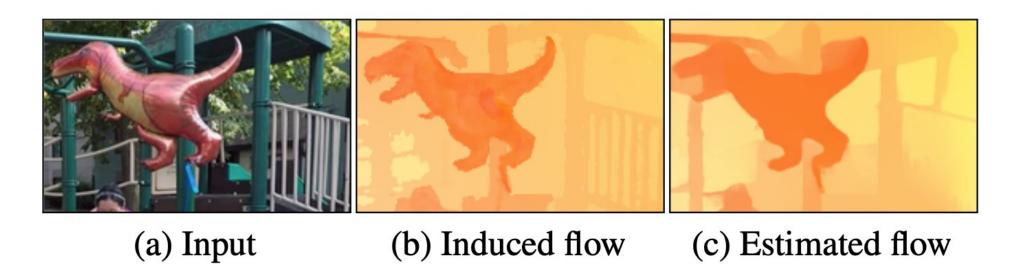
$$\left(\sigma_{t-1}^d, \mathbf{c}_{t-1}^d\right) = \mathbf{MLP}_{\theta_d}(\mathbf{r}(u_k) + \mathbf{s}_{bw}, t-1) \tag{7}$$

$$\mathbf{C}_{t'}^{d}(\mathbf{r}) = \sum_{k=1}^{K} T_{t'}^{d}(u_k) \, \alpha^{d}(\sigma_{t'}^{d}(u_k) \, \delta_k) \, \mathbf{c}_{t'}^{d}(u_k) \tag{8}$$

$$\mathcal{L}_{dyn} = \sum_{t' \in \{t, t-1, t+1\}} \sum_{ij} \left\| \left(\mathbf{C}_{t'}^d(\mathbf{r}_{ij}) - \mathbf{C}^{gt}(\mathbf{r}_{ij}) \right) \right\|_2^2 \quad (9)$$

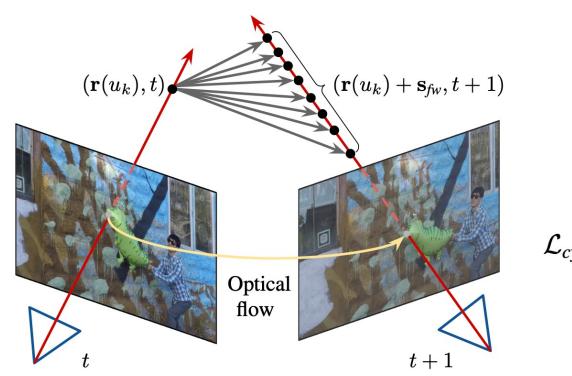
Motion matching loss

- Minimize the endpoint error between the estimated optical flow and our scene flow induced optical flow
- Since we jointly train our model with both photometric loss and motion matching loss, finally, our learned volume density helps render a more accurate flow than the estimated.



Motion regularization

- 2D optical flow does not fully resolve all ambiguity, since 1D family vectors produces the same 2D optical flow
- Regularize the scene flow to be slow and temporally smooth
- Cycle consistency regularization improve the consistency of the scene flow



$$\mathcal{L}_{slow} = \sum_{ij} \left\| \mathbf{s}_{fw}(\mathbf{r}_{ij}) \right\|_{1} + \left\| \mathbf{s}_{bw}(\mathbf{r}_{ij}) \right\|_{1}$$
 (10)

$$\mathcal{L}_{smooth} = \sum_{ij} \left\| \mathbf{s}_{fw}(\mathbf{r}_{ij}) + \mathbf{s}_{bw}(\mathbf{r}_{ij}) \right\|_{2}^{2}$$
 (11)

$$\mathcal{L}_{cyc} = \sum \|\mathbf{s}_{fw}(\mathbf{r}, t) + \mathbf{s}_{bw}(\mathbf{r} + \mathbf{s}_{fw}(\mathbf{r}, t), t + 1)\|_{2}^{2} \quad (12)$$

+
$$\|\mathbf{s}_{bw}(\mathbf{r},t) + \mathbf{s}_{fw}(\mathbf{r} + \mathbf{s}_{bw}(\mathbf{r},t), t-1)\|_{2}^{2}$$
 (13)

Sparsity regularization

• Minimize the entropy of the rendering weights $T^d \alpha^d$ along each ray so that few samples dominate the rendering

Depth order loss

- For a moving object, we can either interpret it as
 - close and slowly
 - far away and fast
- Leverage the MiDaS depth estimation to estimate the input depth.
- With static NeRF estimates accurate depth, we constrain our dynamic NeRF with it

$$egin{aligned} \mathcal{L}_{depth} &= \sum_{ij} \left\| \overline{\mathbf{D}^d}(\mathbf{r}_{ij}) - \overline{\mathbf{D}^{gt}}(\mathbf{r}_{ij})
ight\|_2^2 + \\ & \left\| \left(\mathbf{D}^d(\mathbf{r}_{ij}) - \mathbf{D}^s(\mathbf{r}_{ij})
ight) \cdot \left(1 - \mathbf{M}(\mathbf{r}_{ij})
ight)
ight\|_2^2, \end{aligned}$$

• 3D temporal consistency loss

- If an object remains unmoved for a while, the network can not learn the correct volume density and color of the occluded background, the model may generate holes.
- Enforce the volume density and color of each 3D position to match its scene flow neighbors'

Rigidity regularization of the scene flow

- If 3D position has no motion, model prefers to explain by the static NeRF, blending weight b to be closed to 1 and the scene flow is forced to be zero.
- For a non-rigid position, the blending weight b should be 0.

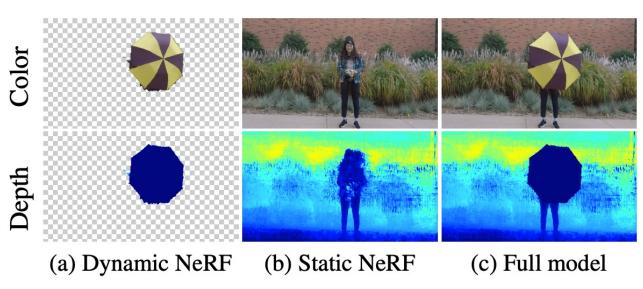
Final Loss

Combined model

$$\mathbf{C}^{full}(\mathbf{r}) = \sum_{k=1}^{K} T^{full} \left(\alpha^{d} (\sigma^{d} \delta_{k}) (1 - b) \mathbf{c}^{d} + \alpha^{s} (\sigma^{s} \delta_{k}) b \mathbf{c}^{s} \right)$$
(14)

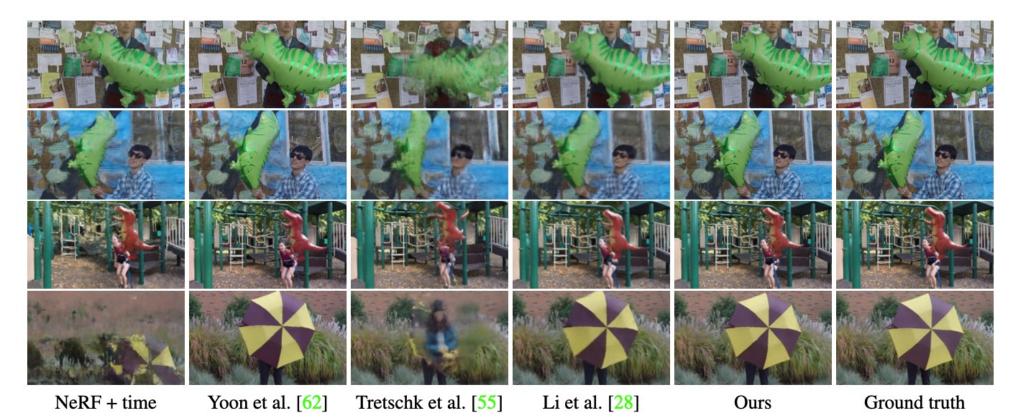
Full rendering photometric loss

$$\mathcal{L}_{full} = \sum_{ij} \left\| \mathbf{C}^{full}(\mathbf{r}_{ij}) - \mathbf{C}^{gt}(\mathbf{r}_{ij}) \right\|_{2}^{2}$$
 (15)



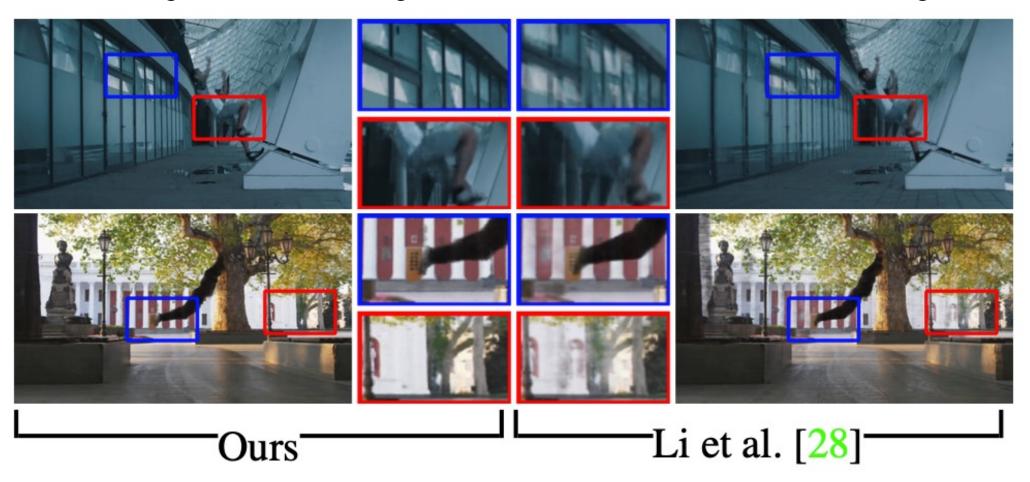
Experiment

PSNR \uparrow / LPIPS \downarrow	Jumping	Skating	Truck	Umbrella	Balloon1	Balloon2	Playground	Average
NeRF	20.58 / 0.305	23.05 / 0.316	22.61 / 0.225	21.08 / 0.441	19.07 / 0.214	24.08 / 0.098	20.86 / 0.164	21.62 / 0.252
NeRF + time	16.72 / 0.489	19.23 / 0.542	17.17 / 0.403	17.17 / 0.752	17.33 / 0.304	19.67 / 0.236	13.80 / 0.444	17.30 / 0.453
Yoon et al. [62]	20.16 / <u>0.148</u>	21.75 / <u>0.135</u>	23.93 / 0.109	20.35 / <u>0.179</u>	18.76 / <u>0.178</u>	19.89 / <u>0.138</u>	15.09 / 0.183	19.99 / <u>0.153</u>
Tretschk et al. [55]	19.38 / 0.295	23.29 / 0.234	19.02 / 0.453	19.26 / 0.427	16.98 / 0.353	22.23 / 0.212	14.24 / 0.336	19.20 / 0.330
Li et al. [28]	24.12 / 0.156	28.91 / <u>0.135</u>	25.94 / 0.171	22.58 / 0.302	21.40 / 0.225	24.09 / 0.228	20.91 / 0.220	<u>23.99</u> / 0.205
Ours	24.23 / 0.144	28.90 / 0.124	<u>25.78</u> / <u>0.134</u>	23.15 / 0.146	21.47 / 0.125	25.97 / 0.059	23.65 / 0.093	24.74 / 0.118



Experiment

- rigidity regularization are the keys to better visual results
 - We learn a time-varying blending weight.
 - Without this regularization, the background becomes time-variant and leads to floating artifacts



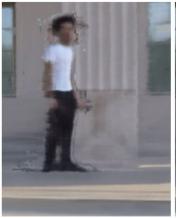
Ablation study

depth order loss

• Training with depth order loss ensures the correct relative depth of the dynamic object.

Motion regularize loss

• Regularizing our scene flow prediction in dynamic NeRF can help handle videos with large object motion.



Without depth order loss

With depth order loss

Without motion regularization

With motion regularization

	PSNR ↑	SSIM ↑	LPIPS ↓
Ours w/o \mathcal{L}_{depth}	22.99	0.8170	0.117
Ours w/o \mathcal{L}_{motion}	22.61	0.8027	0.137
Ours w/o rigidity	22.73	0.8142	0.118
Ours	23.65	0.8452	0.093

Conclusion of Related work

• D-NeRF:

- represent time-varying deformations with two modules
 - one that learns the deformation field of the scene between original space and the canonical space
 - another that learns canonical configuration

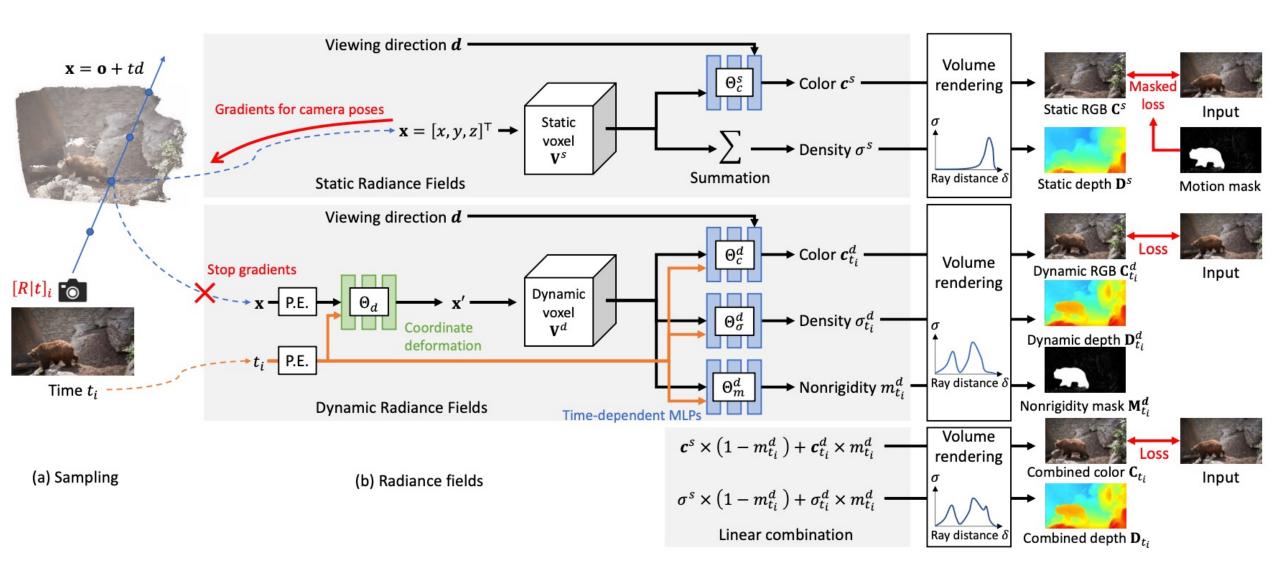
• Dynamic-NeRF:

- scene flow based regularization for enforcing temporal consistency
- jointly training a time-invariant static NeRF and a time-varying Dynamic NeRF, and learn how to blend it

Outline

- Introduction
- Related Work
- Framework
- Method
- Experiment
- Conclusion

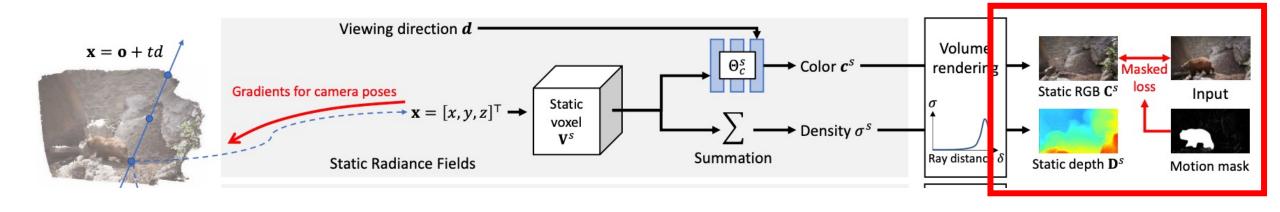
Framework



Outline

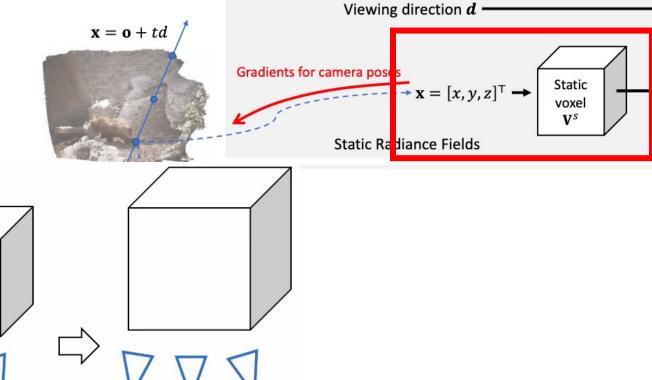
- Introduction
- Related Work
- Framework
- Method
- Experiment
- Conclusion

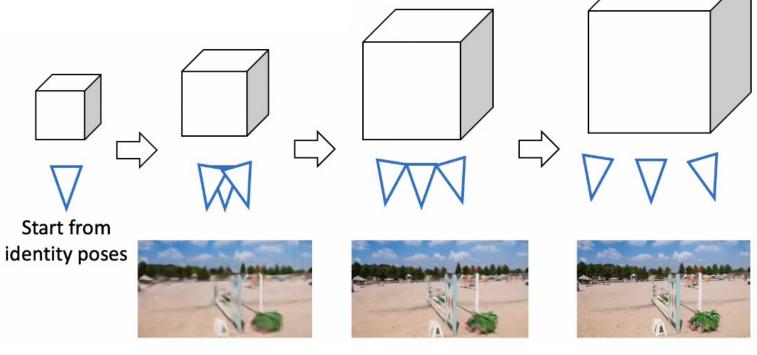
Motion Mask generation



- Excluding dynamic regions helps improve the robustness of camera pose estimation
- Leverage Mask R-CNN
- Epipolar Geometry
 - Estimate the fundamental matrix using the optical flow from consecutive frames
 - Calculate and threshold the Sampson distance (the distance of each pixel to the estimated epipolar line)

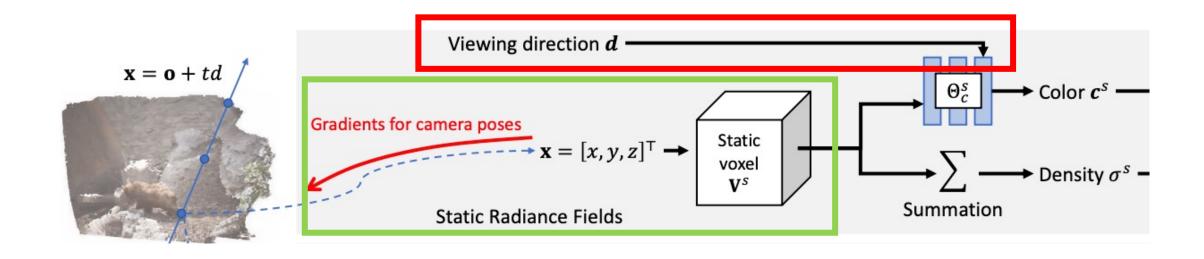
Coarse-to-fine static scene reconstruction





- Optimize, start with a smaller static voxel resolution and progressively increase the voxel resolution during the training.
- This coarse-to-fine strategy is essential to the camera pose estimation as the energy surface will become smoother.

Late viewing direction conditioning



- Fuse the viewing direction only in the last layer of the color MLP
- Without the late viewing direction conditioning, the optimization could minimize the photometric loss by optimizing the MLP and lead to erroneous camera poses and geometry estimation

Photometric Losses

$$\hat{\mathbf{C}}(\mathbf{r}) = \sum_{i=1}^{N} T(i)(1 - \exp(-\sigma(i)\delta(i)))\mathbf{c}(i),$$

$$T(i) = \exp(-\sum_{i=1}^{j} \sigma(j)\delta(j)),$$
(2)

$$\mathcal{L}_c^s = \left\| (\hat{\mathbf{C}}^s(\mathbf{r}) - \mathbf{C}(\mathbf{r})) \cdot (1 - \mathbf{M}(\mathbf{r})) \right\|_2^2, \tag{4}$$

term	meaning
М	the motion mask
δ	the distance between two consecutive sample points along the ray
N	the number of samples along each ray
T	accumulated transparency

Auxiliary Losses (1) Reprojection loss L_{reproj}^s Optical flow

Current frame

- We use 2D optical flow estimated by RAFT to guide the training.
- Volume render all the sampled 3D points along a ray to generate a surface point

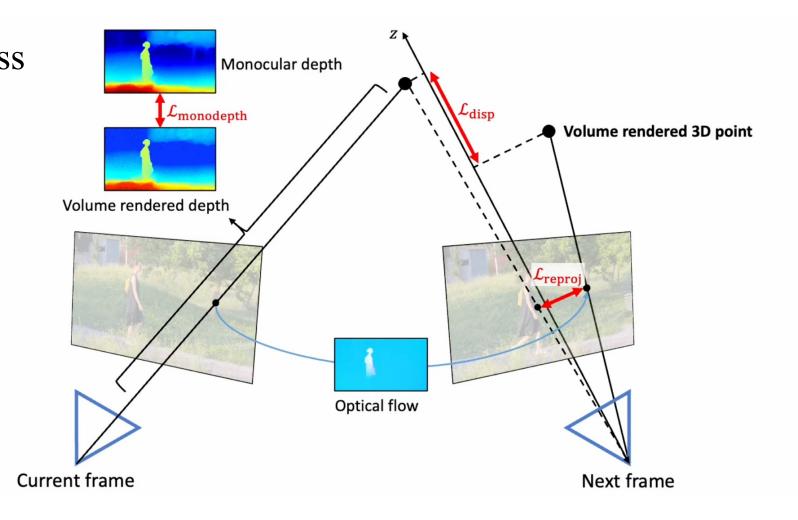
Next frame

• Reproject this point onto its neighbor frame and calculate the reprojection error

Auxiliary Losses (2) Disparity loss L_{disp}^{s} $\mathcal{L}_{ ext{disp}}$ **Volume rendered 3D point** Optical flow Current frame Next frame

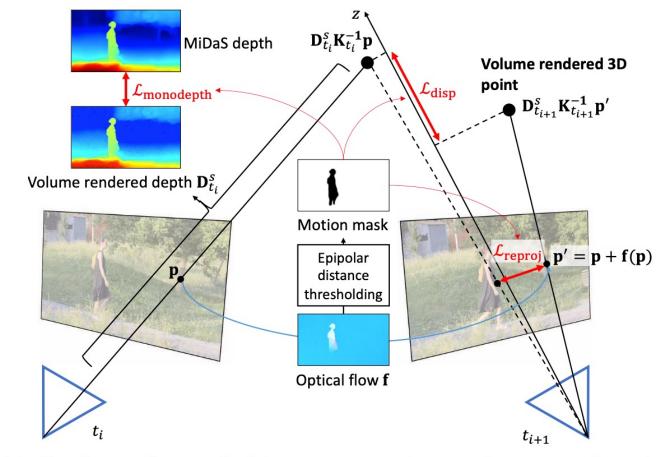
- Regularize the error in the z-direction (in the camera coordinate)
- Volume render the two points into 3D space and calculate the error of the z component
- Care more about the near than the far, we compute this loss in the inverse-depth domain

Auxiliary Losses (3) Monocular depth loss $L_{monodepth}^{s}$



- Pre-calculate the depth map using MiDaS
- Enforce the depth order from multiple pixels of the same frame to match the order of a monocular depth map.

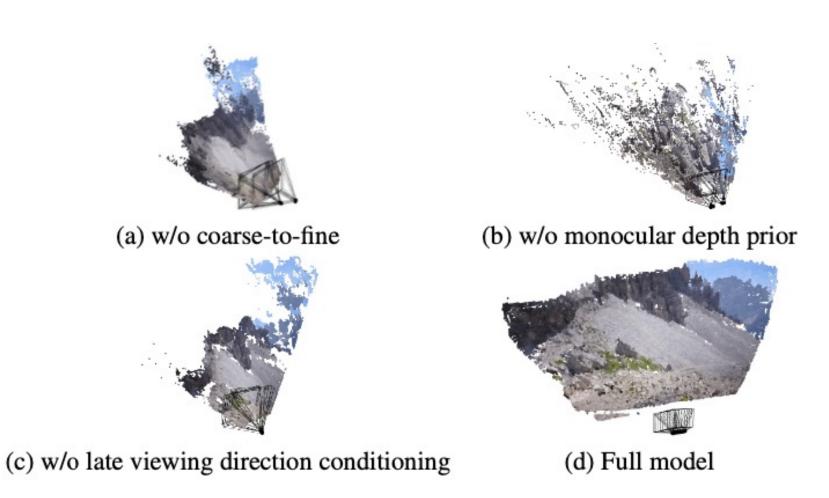
Static Radiance Field final Losses



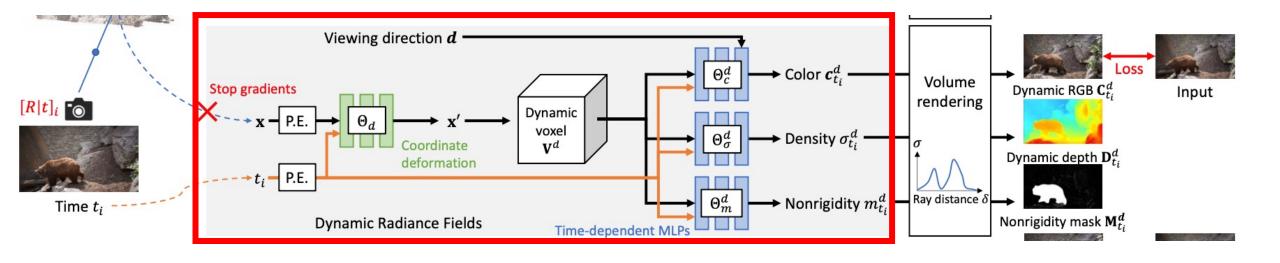
(a) Static radiance field reconstruction and pose estimation

$$\mathcal{L}^{s} = \mathcal{L}_{c}^{s} + \lambda_{\text{reproj}}^{s} \mathcal{L}_{\text{reproj}}^{s} + \lambda_{\text{disp}}^{s} \mathcal{L}_{\text{disp}}^{s} + \lambda_{\text{monodepth}}^{s} \mathcal{L}_{\text{monodepth}}^{s}.$$
(5)

The impact of design choices



Handling temporal information



$$\mathcal{L}_c^d = \left\| \hat{\mathbf{C}}^d(\mathbf{r}) - \mathbf{C}(\mathbf{r}) \right\|_2^2, \tag{6}$$

Scene flow modeling

$$(S_{i\to i+1}, S_{i\to i-1}) = \mathbf{MLP}_{\theta_{sf}}(x, y, z, t_i), \tag{7}$$

term	meaning
$S_{i \rightarrow i+1}$	the 3D scene flow of the 3D point (x, y, z) at time t_i to t_{i+1}
$S_{i \rightarrow i-1}$	the 3D scene flow of the 3D point (x, y, z) at time t_i to t_{i-1}

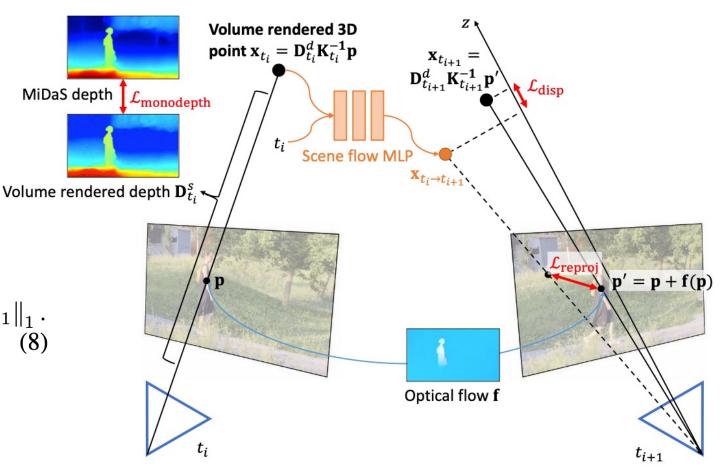
- Need auxiliary loss as external priors to better model the dynamic movements
- Similar to the static part, but we need to model the movements of the 3D points

Scene flow modeling training loss

- (1) Reprojection loss L_{reproj}^d
- (2) Disparity loss L_{disp}^d
- (3) Monocular depth loss $L^d_{monodepth}$

• regularize the 3D motion prediction

$$\mathcal{L}_{sf}^{reg} = \|S_{i \to i+1} + S_{i \to i-1}\|_1 + \|S_{i \to i+1}\|_1 + \|S_{i \to i-1}\|_1.$$
(8)



(b) Dynamic radiance field reconstruction

Other Dynamic part loss

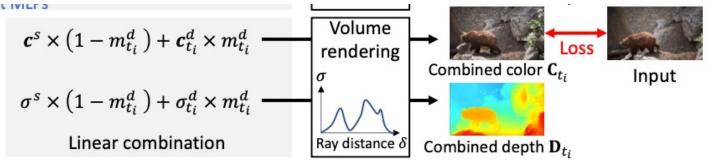
• supervise the nonrigidity mask M_d with motion mask M

$$\mathcal{L}_m^d = \left\| \mathbf{M}^d - \mathbf{M} \right\|_1. \tag{9}$$

overall loss of the dynamic part

$$\mathcal{L}^{d} = \mathcal{L}_{c}^{d} + \lambda_{\text{reproj}}^{d} \mathcal{L}_{\text{reproj}}^{d} + \lambda_{\text{disp}}^{d} \mathcal{L}_{\text{disp}}^{d} + \lambda_{\text{monodepth}}^{d} \mathcal{L}_{\text{monodepth}}^{d} + \lambda_{\text{sf}}^{\text{reg}} \mathcal{L}_{\text{sf}}^{\text{reg}} + \lambda_{m}^{d} \mathcal{L}_{m}^{d}.$$
(10)

Total training loss



• linearly compose the static and dynamic parts into the final results

$$\hat{\mathbf{C}}(\mathbf{r}) = \sum_{i=1}^{N} T(i) (m^d (1 - \exp(-\sigma^d(i)\delta(i))) \mathbf{c}^d(i) + (11)$$

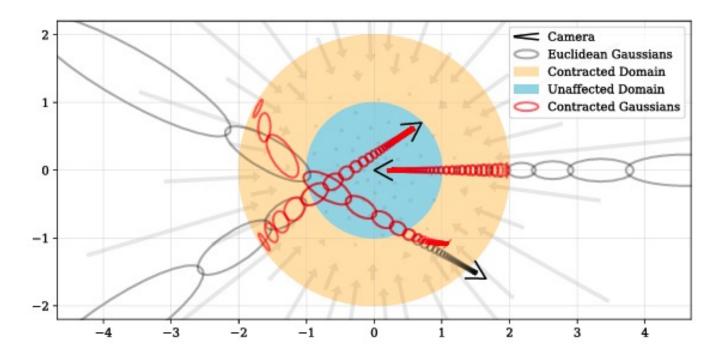
$$(1 - m^d) (1 - \exp(-\sigma^s(i)\delta(i))) \mathbf{c}^s(i)).$$

total training loss

$$\mathcal{L} = \left\| \hat{\mathbf{C}}(\mathbf{r}) - \mathbf{C}(\mathbf{r}) \right\|_{2}^{2} + \mathcal{L}^{s} + \mathcal{L}^{d}.$$
 (12)

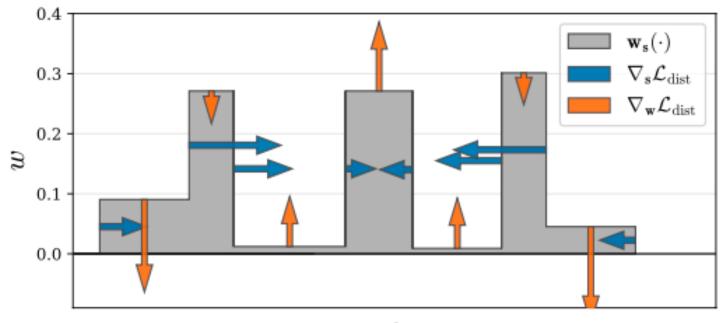
Implementation detail

- The training process takes around 28 hours with one NVIDIA V100 GPU
- we parameterize the scenes with normalized device coordinates (NDC)
- To handle unbounded scenes in the wild videos, we parameterize the scenes using the **contraction parameterization**.



Implementation detail

- Distortion loss:
 - suppresses "floaters" (pieces of semi-transparent material floating in space)
 - regularize the distribution of weights across different segments of a ray
 - encourages each ray to be as compact as possible



Outline

- Introduction
- Related Work
- Framework
- Method
- Experiment
- Conclusion

Evaluation on Camera Poses Estimation

Method	ATE (m)	RPE trans (m)	RPE rot (deg)
R-CVD [35]	0.360	0.154	3.443
DROID-SLAM [70]	0.175	0.084	1.912
ParticleSfM [83]	0.129	0.031	0.535
NeRF [73]	0.433	0.220	3.088
BARF [40]	0.447	0.203	6.353
Ours	0.089	0.073	<u>1.313</u>

• We exclude the COLMAP results since it fails to produce poses in 5 out of 14 sequences in MPI Sintel dataset.

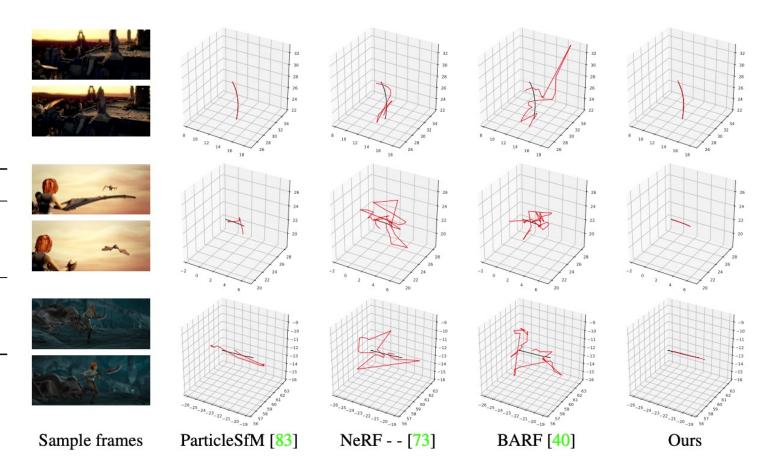
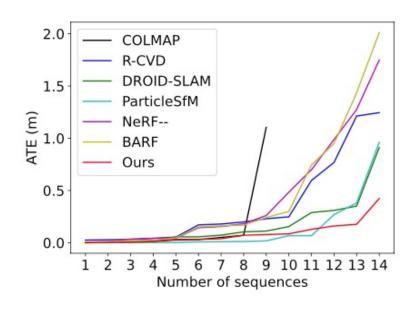
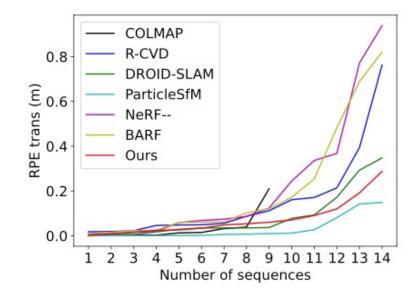


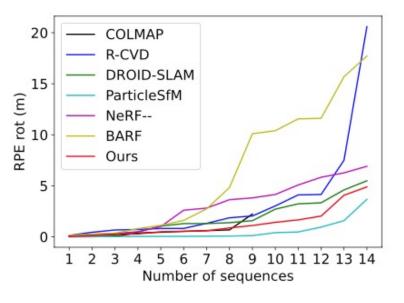
Figure 5. Qualitative results of moving camera localization on the MPI Sintel dataset.

Evaluation on Camera Poses Estimation

• The sorted error plots showing both the accuracy and completeness/robustness in the MPI Sintel dataset.

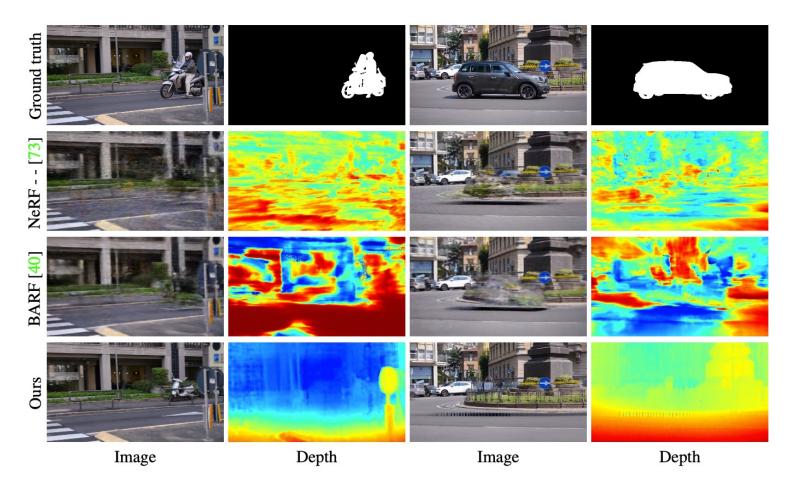






Evaluation on Camera Poses Estimation

• Qualitative results of static view synthesis on the DAVIS dataset from unknown camera poses and ground truth foreground masks.



Evaluation on Dynamic View Synthesis

• We report the average PSNR and LPIPS results with comparisons to existing methods on Dynamic Scene dataset

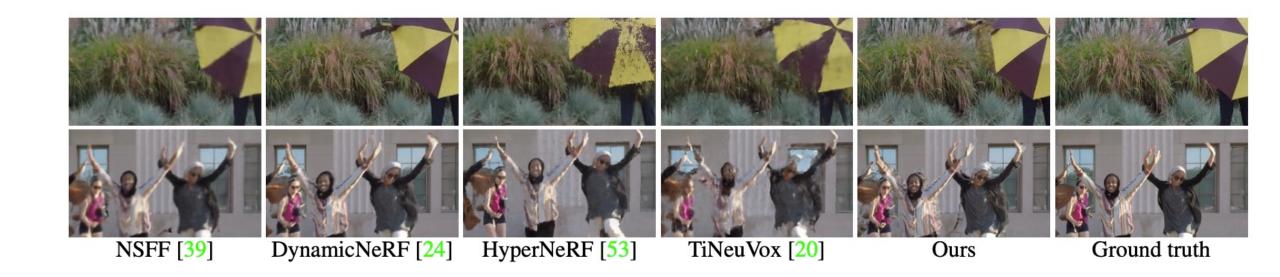
PSNR \uparrow / LPIPS \downarrow	Jumping	Skating	Truck	Umbrella	Balloon1	Balloon2	Playground	Average
NeRF* [44]	20.99 / 0.305	23.67 / 0.311	22.73 / 0.229	21.29 / 0.440	19.82 / 0.205	24.37 / 0.098	21.07 / 0.165	21.99 / 0.250
D-NeRF [56]	22.36 / 0.193	22.48 / 0.323	24.10 / 0.145	21.47 / 0.264	19.06 / 0.259	20.76 / 0.277	20.18 / 0.164	21.48 / 0.232
NR-NeRF* [71]	20.09 / 0.287	23.95 / 0.227	19.33 / 0.446	19.63 / 0.421	17.39 / 0.348	22.41 / 0.213	15.06 / 0.317	19.69 / 0.323
NSFF* [39]	24.65 / 0.151	29.29 / 0.129	25.96 / 0.167	22.97 / 0.295	21.96 / 0.215	24.27 / 0.222	21.22 / 0.212	24.33 / 0.199
DynamicNeRF* [24]	<u>24.68</u> / <u>0.090</u>	32.66 / 0.035	28.56 / 0.082	23.26 / 0.137	<u>22.36</u> / <u>0.104</u>	27.06 / 0.049	<u>24.15</u> / <u>0.080</u>	26.10 / <u>0.082</u>
HyperNeRF [53]	18.34 / 0.302	21.97 / 0.183	20.61 / 0.205	18.59 / 0.443	13.96 / 0.530	16.57 / 0.411	13.17 / 0.495	17.60 / 0.367
TiNeuVox [20]	20.81 / 0.247	23.32 / 0.152	23.86 / 0.173	20.00 / 0.355	17.30 / 0.353	19.06 / 0.279	13.84 / 0.437	19.74 / 0.285
Ours w/ COLMAP poses	25.66 / 0.071	28.68 / <u>0.040</u>	29.13 / 0.063	24.26 / 0.089	22.37 / 0.103	<u>26.19</u> / <u>0.054</u>	24.96 / 0.048	<u>25.89</u> / 0.065
Ours w/o COLMAP poses	24.27 / 0.100	28.71 / 0.046	28.85 / 0.066	23.25 / 0.104	21.81 / 0.122	25.58 / 0.064	25.20 / 0.052	25.38 / 0.079

• We compare the mPSNR and mSSIM scores with existing methods on the iPhone dataset

mPSNR \uparrow / mSSIM \uparrow	Apple	Block	Paper-windmill	Space-out	Spin	Teddy	Wheel	Average
NSFF [39]	17.54 / 0.750	16.61 / 0.639	17.34 / 0.378	17.79 / 0.622	18.38 / 0.585	13.65 / 0.557	13.82 / 0.458	15.46 / 0.569
Nerfies [52]	17.64 / 0.743	17.54 / 0.670	17.38 / 0.382	17.93 / 0.605	19.20 / 0.561	13.97 / 0.568	13.99 / 0.455	16.45 / 0.569
HyperNeRF [53]	16.47 / 0.754	14.71 / 0.606	14.94 / 0.272	17.65 / 0.636	17.26 / 0.540	12.59 / 0.537	14.59 / 0.511	16.81 / 0.550
T-NeRF [25]	17.43 / 0.728	17.52 / 0.669	17.55 / 0.367	17.71 / 0.591	19.16 / 0.567	13.71 / 0.570	15.65 / 0.548	16.96 / 0.577
Ours	18.73 / 0.722	18.73 / 0.634	16.71 / 0.321	18.56 / 0.594	17.41 / 0.484	14.33 / 0.536	15.20 / 0.449	17.09 / 0.534

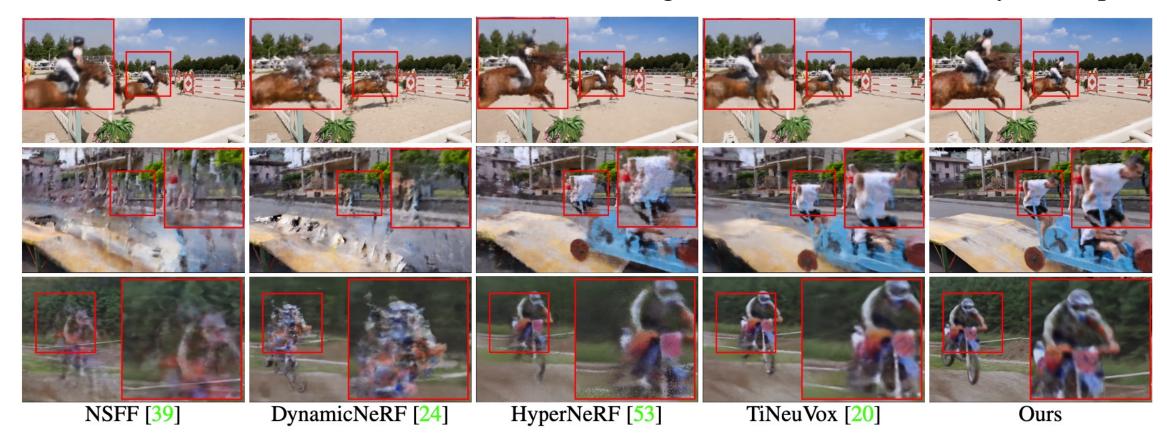
Evaluation on Dynamic View Synthesis

• Compared to other methods, our results are sharper, closer to the ground truth, and contain fewer artifacts.



Evaluation on Dynamic View Synthesis

- COLMAP fails to estimate the camera poses for 44 out of 50 sequences in the DAVIS dataset
- Run our method and give our camera poses to other methods as input
- Other can reconstruct consistent static scenes but generate artifacts for the dynamic parts



Ablation Study

(a) Pose estimation design choices

100,000			
	PSNR ↑	SSIM ↑	LPIPS ↓
Ours w/o coarse-to-fine	12.45	0.4829	0.327
Ours w/o late viewing direction fusion	18.34	0.5521	0.263
Ours w/o stopping the dynamic gradients	21.47	0.7392	0.211
Ours	25.20	0.9052	0.052

(b) Dynamic reconstruction achitectural designs

Dyn. model	Deform. MLP	Time-depend. MLPs PSNR	\uparrow SSIM \uparrow	LPIPS ↓
		21.34	0.8192	0.161
✓	✓	22.3	0.8317	0.115
✓		✓ 23.14	0.8683	0.083
✓	✓	✓ 25.20	0.9052	0.052

(a) w/o coarse-to-fine

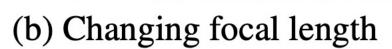
(c) w/o late viewing direction conditioning

(b) w/o monocular depth prior

(d) Full model

Failure Cases

- (a) In the cases that the camera is moving fast, the flow estimation fails and leads to wrong estimated poses and geometry
- (b) Our method assumes a shared intrinsic over the entire video and thus cannot handle changing focal length well.



Outline

- Introduction
- Related Work
- Framework
- Method
- Experiment
- Conclusion

Conclusion

• Present robust dynamic radiance fields for space-time synthesis of casually captured monocular videos without requiring camera poses as input.

• Demonstrate that our approach can reconstruct accurate dynamic radiance fields from a wide range of challenging videos.

• Quantitative and qualitative evaluations demonstrate the robustness of our method over other state-of-the-art methods on several challenging datasets that typical SfM systems fail to estimate camera poses.