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Introduction

* Present a space-time synthesis algorithm from a dynamic monocular video that does not
require known camera poses and camera intrinsics as input.

* Our proposed careful architecture designs and auxiliary losses improve the robustness
of camera pose estimation and dynamic radiance field reconstruction.

* Quantitative and qualitative evaluations demonstrate the robustness of our method over
other state-of-the-art methods on several challenging datasets that typical SfM systems

fail to estimate camera poses.
Table 1. Categorization of view synthesis methods.

‘ Known camera poses ] Unknown camera poses
& @ NeRF [44], SVS [59], NeRF++ [82], NeRF - - [73], BARF [40],
3 § Mip-NeRF [4], Mip-NeRF 360 [5], DirectVoxGO [67], SC-NeRF [ 1],
A Plenoxels [27], Instant-ngp [45], TensoRF [17] NeRF-SLAM [60]
§ o NV [43], D-NeRF [56], NR-NeRF [71],
S 5 NSFF [39], DynamicNeRF [24], Nerfies [57], Ours
] HyperNeRF [57], TiNeuVox [20], T-NeRF [25]
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Related Work

* D-NeRF: Neural Radiance Fields for Dynamic Scenes
* CVPR 2021

* Dynamic View Synthesis from Dynamic Monocular Video
* ICCV 2021
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Introduction

* The first end-to-end neural rendering system that 1s applicable to dynamic scenes.

* Core 1dea to build our method 1s to decompose learning in two modules. Both mappings
are learned with deep fully connected networks without convolutional layers.

* Allows to synthesize novel images, providing control in the continuum (6, @, t) of the
camera views and time component.
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Framework

|\
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Deformed Scene Scene Canonical Space Scene Canonical Space

* The proposed architecture consists of two main blocks

* Deformation network Wt predicts a deformation field defining the transformation between the scene at
time t and the scene 1n its canonical configuration.

* Canonical network Wx regressing volume density and view-dependent RGB color from every camera ray
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* Optimized to estimate the deformation field between the scene at a specific time and the scene
in canonical space

e (Canonical Network

* The canonical network Wx is trained so as to encode volumetric density and color of the scene in
canonical configuration.

» First, encode x into a 256-dimensional feature vector. This feature vector i1s then concatenated with the
camera viewing direction d



Volume Rendering

hy
Cp,t) = / T(h, o (p(h, £))c(p(h, £), d)dh,  (2)

where  p(h,t) = x(h) + W4(x(h), ), 3)
c(p(h,1),d), o (p(h, )] = Tu(p(h,1),d), (&)

h
and  T(h,t) = exp (— /h a(p(s,t))ds). 5)

* Approximated via numerical quadrature
* To select a random set of quadrature points {h,}Y_; € [h,, hr] a stratified sampling strategy

N
C'(p,t) = Y T (hn,t)t(hn,t,6n)c(P(hn, t),d), (6)

n=1

where «(h,t,0) =1— exp( o(p(h,t))d), (7)

and T (hy, 1) —exp( Za ) (8)



Learning Loss
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* Trained with 400 x 400 images during 800k iterations
* Batch size of Ns = 4096 rays, each sampled 64 times along the ray

* Both network consists on simple 8-layers MLPs with ReLU activations



Experiment
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* The same colors on corresponding points indicate the correctness of * Different materials (plastic —green—,
such mapping translucent glass —blue— and metal —red-)

» Able to synthesize the shading effects
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T-NeRF scene 1s represented Method MSE| PSNRtT SSIMT LPIPS| MSE| PSNRt SSIMT LPIPS| MSE| PSNRt SSIMT LPIPS|, MSE| PSNR?T SSIMT LPIPS|

by a 6D mmput (X, Y, Z, 9, Q, t) NeRF  44e3 1352 081 025 9e4 2031 091 009 2le3 1665 084 019 94e4 2026 091 0.2
T-NeRF 47e4 2319 093 008 8e4 3056 096 004 18e4 2721 094 006 16e-5 3781 098  0.12
D-NeRF 3le-4 2502 095 006 7ed 3129 097 002 1led 2925 096 0.1 12-5 3893 098 0.1

° _ RF 1 1 1 Lego T-Rex Stand Up Jumping Jacks
D-Ne ’.r.etams hlgh details Method MSE| PSNRT SSIMt LPIPS| MSE| PSNRt SSIM{ LPIPS| MSE| PSNRT SSIM{ LPIPS, MSE| PSNRt SSIM{ LPIPS|
of the orlglnal Image 1mn the NeRF  9e3 2030 079 023 3e3 2449 093 013 le2 1819 089 0.4 le2 1828 088 023
novel views T-NeRF 3e-4 2382 090 015 93 3019 096 0.3 7ed 3124 097 002 6e4 3201 097 003

D-NeRF 6e-4 2164 083 0.6 6e-3 3175 097 003 Se-d 3279 098 002 Se-4 3280 098  0.03

Table 1: Quantitative Comparison. We report MSE/LPIPS (lower is better) and PSNR/SSIM (higher is better).
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Introduction

* Present an algorithm for generating novel views at arbitrary viewpoints and any input
time step given a monocular video of a dynamic scene.

* Jointly train a time-invariant static NeRF and a time-varying dynamic NeRF, and learn
how to blend the results in an unsupervised manner.

* To resolve the ambiguity, we introduce multi-view constraints and regularization losses
to encourage a more physically plausible solution.
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Framework
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(a) Static NeRF (Section 3.2) (b) Dynamic NeRF (Section 3.3)

* propose to use two different models to scene components
* (a) Static NeRF: reconstruct the background’s structure and appearance without moving objects
* (b) Dynamic NeRF: model a dynamic scene from a single video, leverage the multi-view constraints



Static NeRF

r(ug) = o+urd
(087 Cs) = MLPy (I‘(’U,k)) ) (1)

* using numerical quadrature for approximating the volume rendering interval

ZTS uk uk) 5k) (uk), (2)

T(u —exp( Za Uk ) ) (3)

cstatz’c — Z ||(CS(I‘ZJ) — Cgt(r’ij)) ) (1 _ M(r’bj))HZ

4)



Dynamic NeRF

* Train an MLP that takes a 3D position and time (X, y, z, t) as input to model the volume
density and color of the dynamic objects at each time instance

* Lacks multi-view constraints. We predict the forward and backward scene flow and use
them to create a warped radiance field.

d d
(Ut+1a Cit1
d d
(035—17 Ci_1

d _d
(SfW7 Sbwy Ot 5 Cpy

) = MLPg, (r(uy) -

b) = MLPy, (r(ug),t)

_SfW7t+1)

) = MLPg, (r(uy) -

~ Spw T — 1)

(5)

(6)
(7)



Dynamic NeRF

* Dynamic rendering photometric loss
» warped radiance field by resampling the radiance fields implicitly modeled attime t + 1 and t — 1

(021, €fy1) = MLPg, (r(uz) +sp, t+1)  (6)
(o1, ¢l_1) = MLPg, (r(ug) + Spw, t —1)  (7)

C%(r ZTﬂ ug) oo (u) 0) €& (ug)  (8)
k=1

Layn = Z Z” (C (rig) — C¥(rij) Hz 9)

t'e{t,t—1,t+1} 1ij



Regularization Losses for Dynamic NeRF

* Motion matching loss

* Minimize the endpoint error between the estimated optical flow and our scene flow induced optical
flow

 Since we jointly train our model with both photometric loss and motion matching loss, finally, our
learned volume density helps render a more accurate flow than the estimated.

(b) Induced flow (c) Estimated flow



Regularization Losses for Dynamic NeRF

* Motion regularization

» 2D optical flow does not fully resolve all ambiguity, since 1D family vectors produces the same 2D
optical flow

* Regularize the scene flow to be slow and temporally smooth
* Cycle consistency regularization improve the consistency of the scene flow

Low =Y _lIspw(®i;)ll; + lsmw(rii)l,  (10)

iJ

Lsmooth = Z ”SfW(rij) + Sbw(rij)ng (11)

Ecyc — Z ”wa(rat) £ Sbw(r i SfW(ra t)a t+ 1)”3 (12)
+ |Isew (T, 1) + o (T + S (T, 2), t — 1)]|2 (13)




Regularization Losses for Dynamic NeRF

* Sparsity regularization

» Minimize the entropy of the rendering weights T¢a® along each ray so that few samples dominate
the rendering

* Depth order loss
* For a moving object, we can either interpret it as
* close and slowly
 far away and fast
* Leverage the MiDaS depth estimation to estimate the input depth.
» With static NeRF estimates accurate depth, we constrain our dynamic NeRF with it

L 2
Laem = D _ |[D4(rs;) - Dgf(rij)”z +

©]

(D (rs;) — D*(rs5)) - (1 — M(ri;))][5



Regularization Losses for Dynamic NeRF

* 3D temporal consistency loss

* If an object remains unmoved for a while, the network can not learn the correct volume density and
color of the occluded background, the model may generate holes.

* Enforce the volume density and color of each 3D position to match its scene flow neighbors’

* Rigidity regularization of the scene flow

 If 3D position has no motion, model prefers to explain by the static NeRF, blending weight b to be
closed to 1 and the scene flow is forced to be zero.

* For a non-rigid position, the blending weight b should be 0.



Final Loss

e Combined model

K
Cll(r) =} Tﬁ‘ll(ad(addk)(l —b)ct + as(asék)bcs)
k=1
(14)
* Full rendering photometric loss 5
S
, O
Lo = Z | O (ri;) — C¥'(r45) | (15)
ij =
o
A

(a) Dynamic NeRF (b) Static NeRF (c) Full model



Experiment

PSNR 1 /LPIPS | Jumping Skating Truck Umbrella Balloonl1 Balloon2 Playground | Average

NeRF 20.58/0.305 23.05/0.316 22.61/0.225 21.08/0.441 19.07/0.214 24.08/0.098 20.86/0.164 | 21.62/0.252
NeRF + time 16.72/0.489 19.23/0.542 17.17/0.403 17.17/0.752 17.33/0.304 19.67/0.236 13.80/0.444 | 17.30/0.453
Yoon et al. [67] 20.16/0.148 21.75/0.135 23.93/0.109 20.35/0.179 18.76/0.178 19.89/0.138 15.09/0.183 | 19.99/0.153
Tretschk et al. [55] 19.38/0.295 23.29/0.234 19.02/0.453 19.26/0.427 1698/0.353 22.23/0.212 14.24/0.336 | 19.20/0.330
Lietal. [27] 24.12/0.156 28.91/0.135 25.94/0.171 22.58/0.302 21.40/0.225 24.09/0.228 20.91/0.220 | 23.99/0.205
Ours 24.23/0.144 2890/0.124 25.78/0.134 23.15/0.146 21.47/0.125 25.97/0.059 23.65/0.093 | 24.74/0.118

NeRF + time

Yoon et al. [67]

Tretschk et al. [57]

Lietal. [27]

Ground truth



Experiment

* rigidity regularization are the keys to better visual results
* We learn a time-varying blending weight.
» Without this regularization, the background becomes time-variant and leads to floating artifacts

Lietal. [2¢]



Ablation study

* depth order loss

* Training with depth order loss ensures the correct relative depth of the dynamic object.

* Motion regularize loss

* Regularizing our scene flow prediction in dynamic NeRF can help handle videos with large object
motion.

PSNR+ SSIM{T LPIPS |

Ours W/0 L gepin 22.99 0.8170 0.117
Ours w/o L, si0n 22.61 0.8027 0.137

E— | I : Ours w/o rigidity 22.73 0.8142 0.118
(ST e ()1 23.65 0.8452 0.093

Without depth ~ With depth  Without motion  With motion
order loss order loss regularization regularization



Conclusion of Related work

* D-NeRF:

* represent time-varying deformations with two modules

* one that learns the deformation field of the scene between original space and the canonical
space

* another that learns canonical configuration
* Dynamic-NeRF:
* scene flow based regularization for enforcing temporal consistency

* jointly training a time-invariant static NeRF and a time-varying Dynamic
NeRF, and learn how to blend 1t
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Framework
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Motion Mask generation

Viewing direction d
1 Volumeé 4 G |
| 63 Color ¢*® rendering [~ PSNPH |Vasked IR
. U Static RGB €S 1055
tatic ()
voxel " R . e t ! q
Vs » » Density o J —> _!
Static Radiance Fields Summation Ray distancl 8| static depth DS Motion mask

* Excluding dynamic regions helps improve the robustness of camera pose estimation
* Leverage Mask R-CNN
* Epipolar Geometry

* Estimate the fundamental matrix using the optical flow from consecutive frames

 Calculate and threshold the Sampson distance (the distance of each pixel to the estimated epipolar
line)



Viewing direction d

Gradients for camera posgs

Coarse-to-fine static scene  § 0, oo

reconSthtiOn A_: 3 . ‘ ' l' I Static Rgliance Fields

v wm T N TVl

Start from
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* Optimize, start with a smaller static voxel resolution and progressively increase the voxel resolution
during the training.
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W
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* This coarse-to-fine strategy is essential to the camera pose estimation as the energy surface will
become smoother.



Late viewing direction conditioning

Static Radiance Fields

032 Color ¢® =——

Static

voxel
vS

>Z = Density o° =

Summation

* Fuse the viewing direction only 1n the last layer of the color MLP

* Without the late viewing direction conditioning, the optimization could minimize the
photometric loss by optimizing the MLP and lead to erroneous camera poses and

geometry estimation



Photometric Losses

N
C(r) = Z T(i)(1 — exp(—0(4)d(2)))c(i),

y (2)
T(i) = exp(— Y 0(4)3(5)),
1—1
~ Z
L= @ -ca)-a-Ma)| , @
M the motion mask
o) the distance between two consecutive sample points along the ray
N the number of samples along each ray
T accumulated transparency



Auxiliary Losses
(1) Reprojection loss L

S
reproj

Optical flow

Current frame Next frame

* We use 2D optical flow estimated by RAFT to guide the training.
* Volume render all the sampled 3D points along a ray to generate a surface point
* Reproject this point onto its neighbor frame and calculate the reprojection error



Auxiliary Losses
(2) Disparity loss Ly,

Volume rendered 3D point

Optical flow

Current frame Next frame

* Regularize the error in the z-direction (in the camera coordinate)
* Volume render the two points into 3D space and calculate the error of the z component

* Care more about the near than the far, we compute this loss in the inverse-depth domain



Auxiliary Losses
(3) Monocular depth loss
S

Monocular depth

monodepth

Lmonodepth

Volume rendered depth

Optical flow
Current frame Next frame

* Pre-calculate the depth map using MiDaS

* Enforce the depth order from multiple pixels of the same frame to match the order of a
monocular depth map.



Static Radiance
Field final Losses

Motion mask [ —
N v 2ok S 2 e

Epipolar \=~reprojy p’' = p + f(p)

distance |

thresholding
I

Optical flow f

(a) Static radiance field reconstruction and pose estimation

S __ s 8 S 8 8 8 8
L° = ‘Cc + Areproj [’reproj + Adispcdisp + ’\monodepth‘cmonodepth°

S)



The impact of design choices
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(c) w/o late viewing direction conditioning (d) Full model



Handling temporal information
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Scene flow modeling

(Si—>73+17 S’i—>i—1) — MLP@sf(xa Y, <, t’t)a (7)

meaning

Sisit1 the 3D scene flow of the 3D point (x,y,z) attime t; to t;;4

Sisi1 the 3D scene flow of the 3D point (x,y,z) attime t; to t;_4

* Need auxiliary loss as external priors to better model the dynamic movements

* Similar to the static part, but we need to model the movements of the 3D points



Scene flow modeling training loss

(1) Reprojection loss L4

Volume rendered 3D

repro
J pointx,, = DEK;1p

Xtip1 =
Dd K—l p'

tiv1 it B )
-

(2) Disparity loss Ldlsp

MiDaS depth |

monodepth

(3) Monocular depth loss Lmonodepth

Volume rendered depth D,

* regularize the 3D motion prediction

reg

sf — ||Sz—>z+1 + Sz—)z 1”1 + ”Sz—)z—{—l”l + ”Sz—m 1”1
(8)

Optical flow f

(b) Dynamic radiance field reconstruction



Other Dynamic part loss

* supervise the nonrigidity mask M; with motion mask M
Lo = M =M][, . ©)
* overall loss of the dynamic part

L = L2+ NproiLovproj + MispLispT

reproj~'reproj

d d reg preg d pd
A th‘C onodepth + )‘sf ‘Csf + >‘m£m‘

monodep m

(10)



Volume
¢ x (1—mf )+ cf xm yend=ting pe A »
o e P Combmed coIor Cy; Input
Total training loss P o s .
Linear combination Ray distance & Com‘bmed de# D,,

* linearly compose the static and dynamic parts into the final results
ZT (1 — exp(—0(4)d(2)))c” (i) +
(1 —m?)(1 — exp(—a°(1)(7)))c*(i)).

(11)

* total training loss

L= ||C(r) - C(r) z + L5+ L% (12)




Implementation detail

* The training process takes around 28 hours with one NVIDIA V100 GPU
* we parameterize the scenes with normalized device coordinates (NDC)

* To handle unbounded scenes 1n the wild videos, we parameterize the scenes using the
contraction parameterization.

2 - - Camera
Euclidean Gaussians
Contracted Domain
Unaffected Domain
14 ﬂ' —.» Contracted Gaussians
0 \% < Cmm——ccCR}
-1 8
L) ,,\
_2 .
-4 -3 -2 -1 0 1 2 3 4

Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields



Implementation detail

e Distortion loss:

* suppresses “floaters” (pieces of semi-transparent material floating in space)
* regularize the distribution of weights across different segments of a ray
* encourages each ray to be as compact as possible
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Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields
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Evaluation on Camera
Poses Estimation

g e =

Method ATE (m) RPE trans (m) RPE rot (deg)
R-CVD [35] 0.360 0.154 3.443
DROID-SLAM [70] 0.175 0.084 1.912
ParticleSfM [53] 0.129 0.031 0.535
NeRF - - [77] 0.433 0.220 3.088
BAREF [40] 0.447 0.203 6.353
Ours 0.089 0.073 1.313

 We exclude the COLMAP results

since it fails to produce poses in 5 out Sample frames  ParticleSIM[#7]  NeRE - - [77] BARF [40]
of 14 sequences in MPI Sintel dataset.

Figure 5. Qualitative results of moving camera localization on
the MPI Sintel dataset.



Evaluation on Camera Poses Estimation

0.0

* The sorted error plots showing both the accuracy and completeness/robustness 1n the

MPI Sintel dataset.
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Evaluation on Camera Poses Estimation

* Qualitative results of static view synthesis on the DAVIS dataset from unknown
camera poses and ground truth foreground masks.

[73] Ground truth

NeRF - -

BARF [40]




Evaluation on Dynamic View Synthesis

* We report the average PSNR and LPIPS results with comparisons to existing methods
on Dynamic Scene dataset

PSNR 1/LPIPS | Jumping Skating Truck Umbrella Balloonl Balloon2 Playground | Average

NeRF* [44] 20.99/0.305 23.67/0.311 22.73/0.229 21.29/0.440 19.82/0.205 24.37/0.098 21.07/0.165 | 21.99/0.250
D-NeRF [56] 22.36/0.193 22.48/0.323 24.10/0.145 21.47/0.264 19.06/0.259 20.76/0.277 20.18/0.164 | 21.48/0.232
NR-NeRF* [71] 20.09/0.287 23.95/0.227 19.33/0.446 19.63/0.421 17.39/0.348 2241/0.213 15.06/0.317 | 19.69/0.323
NSFF* [39] 24.65/0.151 29.29/0.129 25.96/0.167 22.97/0.295 2196/0.215 24.27/0.222 21.22/0.212 | 24.33/0.199
DynamicNeRF* [24] 24.68/0.090 32.66/0.035 28.56/0.082 23.26/0.137 22.36/0.104 27.06/0.049 24.15/0.080 | 26.10/0.082
HyperNeRF [57] 18.34/0.302 21.97/0.183 20.61/0.205 18.59/0.443 1396/0.530 16.57/0.411 13.17/0.495 | 17.60/0.367
TiNeuVox [2(] 20.81/0.247 23.32/0.152 23.86/0.173 20.00/0.355 17.30/0.353 19.06/0.279 13.84/0.437 | 19.74/0.285
Ours w/ COLMAP poses  25.66/0.071 28.68/0.040 29.13/0.063 24.26/0.089 22.37/0.103 26.19/0.054 24.96/0.048 | 25.89/0.065

Ours w/o COLMAP poses  24.27/0.100 28.71/0.046 28.85/0.066 23.25/0.104 21.81/0.122 25.58/0.064 25.20/0.052 | 25.38/0.079

* We compare the mPSNR and mSSIM scores with existing methods on the 1IPhone dataset

mPSNR 1/ mSSIM 1 Apple Block Paper-windmill Space-out Spin Teddy Wheel | Average
NSFF [39] 17.54/0.750 16.61/0.639 17.34/0.378 17.79/0.622 18.38/0.585 13.65/0.557 13.82/0.458 | 15.46/0.569
Nerfies [57] 17.64/0.743 17.54/0.670  17.38/0.382  17.93/0.605 [19.2070.561 1 13.97/0.568 13.99/0.455 | 16.45/0.569
HyperNeRF [57] 16.47/0.754 14.71/0.606 14.94/0272 17.65/0.636 17.26/0.540 12.59/0.537 14.59/0.511 | 16.81/0.550
T-NeRF [25] 17.43/0.728 17.52/0.669 [172.55/0367] 17.71/0.591 19.16/0.567 13.71/0.570 [15.6570.548 ) 16.96/0.577

Ours 18.73/0.722 11 18.73/0.634 ] 16.71/0.321 | 18.56/0.5941 17.41/0.484 | 14.33/0.5364 15.20/0.449 || .17.09/0.534




Evaluation on Dynamic View Synthesis

* Compared to other methods, our results are sharper, closer to the ground truth, and
contain fewer artifacts.
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Evaluation on Dynamic View Synthesis

« COLMAP fails to estimate the camera poses for 44 out of 50 sequences in the DAVIS dataset
* Run our method and give our camera poses to other methods as input

 Other can reconstruct consistent static scenes but generate artifacts for the dynamic parts

DynamicNeRF [24] HyperNeRF [57] k TiNeuVox [20]



Ablation Study

(a) Pose estimation design choices

PSNRt+ SSIMt LPIPS |
Ours w/o coarse-to-fine 12.45 0.4829 0.327
Ours w/o late viewing direction fusion 18.34 0.5521 0.263
Ours w/o stopping the dynamic gradients 21.47 0.7392 0.211
Ours 25.20 0.9052 0.052

(b) Dynamic reconstruction achitectural designs

Dyn. model Deform. MLP Time-depend. MLPs | PSNRT SSIMT LPIPS|

21.34 0.8192 0.161
v v 22.37 0.8317 0.115
v v 23.14 0.8683 0.083
v v v 25.20 0.9052 0.052

(c) w/o late viewing direction conditioning

(d) Full model



Failure Cases

* (a) In the cases that the camera 1s moving fast, the flow estimation fails and leads to
wrong estimated poses and geometry

* (b) Our method assumes a shared intrinsic over the entire video and thus cannot
handle changing focal length well.

. e N

(a) Fast moving camera (b) Changing focal length
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 Conclusion



Conclusion

* Present robust dynamic radiance fields for space-time synthesis of casually
captured monocular videos without requiring camera poses as input.

* Demonstrate that our approach can reconstruct accurate dynamic radiance fields
from a wide range of challenging videos.

* Quantitative and qualitative evaluations demonstrate the robustness of our method
over other state-of-the-art methods on several challenging datasets that typical
STM systems fail to estimate camera poses.



